Was die Symplegaden in antiker Vorzeit nicht geschafft haben, ist vom französischen Astronomen Nicolas Louis de Lacaille 1752 bei seiner Kartographierung des Südhimmels erreicht worden – die Zerlegung der Argo Navis in mehrere ihrer Hauptbestandteile. Noch im 2. Jahrhundert unserer Zeit benannte Claudius Ptolemäus einzelne Sterne dieses großen südlichen Sternbildes nach Details der Argo, so unter anderem ein Grüppchen oberhalb der Segel als „Malus“, den Mast. Als nordwestlichstes Teil wurde dieser obere Mast samt Mastkorb zum heutigen Sternbild Pyxis Nautica, dem Schiffskompass. Hierbei handelt es sich jedoch nicht um einen Ausrüstungsgegenstand der Argo sondern um eines der neun wissenschaftlichen Geräte, die Lacaille mit der 1756 veröffentlichten „Planisphere des Etoiles Australes“ am Himmel verewigt hat. Bei der bildlichen Darstellung orientierte man sich am Aussehen der zur damaligen Zeit gebräuchlichen „Schiffsbüchsen“, lateinisch Pyxis Nautica, wie sie von den seefahrenden Navigatoren zur Tarnung genannt wurden. Die antiken Griechen, hier die mythischen Helden, kannten den Magnetkompass noch nicht. Sie navigierten noch überwiegend rein nautisch nach dem Stand der Gestirne einschließlich der Sonne. Hierbei wurde auch der Mast bzw. Mastkorb als Hilfsmittel mit einbezogen. Somit landete der „moderne“ Kompass an dieser exponierten Stelle. Johann Ehlert Bode fügte in seine Uranographia in das gleiche Areal noch die damals sehr wichtigen Geräte Log und Leine als Sternbild „Lochium Funis“ mit ein, die aber spätestens 1930 der Neuordnung durch die IAU zum Opfer fielen.
Zu den Ursprüngen des Kompasses habe ich sinngemäß nachfolgendes gefunden:
Die Erkenntnis, dass sich längliche, stiftartige Splitter von Magneteisenstein in Flüssigkeit schwimmend in die Nord-Süd-Richtung drehen, war in Europa seit der späten griechischen Antikeund in China seit der Zeit der Streitenden Reiche, zwischen 475 v. Chr. und 221 v. Chr. bekannt. Ob überhaupt und wenn ja in wie weit diese Erkenntnis schon zur Navigation genutzt wurde, ist nicht belegt. Die seriösen Studien zum Ursprung des Kompasses von Julius Klaproth und L. de Saussure führen zu dem Ergebnis, dass die chinesischen Navigatoren den nassen Kompass bereits um die Jahrtausendwende kannten. Die Chinesen benutzten seit dem 11. Jahrhundert eine schwimmende, nasse Kompassnadel, die Südweiser genannt wurde. Tatsächlich zeigt der chinesische Kompass nicht nach Norden, sondern nach Süden. Im Laufe der Zeit entwickelten sich daraus spezielle Kompassformen mit einer Einteilung in 24, 32, 48 oder 64 Striche bzw. Himmelsrichtungen. Ende des 11. Jahrhunderts empfahl Shen Kuo (1031–1095) in seinem Hauptwerk einen Kompass mit Einteilung in 24 Richtungen; kurz nach seinem Tod waren solche Kompasse tatsächlich im Gebrauch.
Die Matrosen des östlichen Mittelmeeres haben spätestens zur Zeit der Kreuzzüge vom nassen Kompass erfahren und ihn optimiert. Da er seinem Besitzer jedoch einerseits große Vorteile gegenüber der Konkurrenz brachte, andererseits aber scheinbar mit verbotenen magischen Kräften funktionierte, wurde dieses Wissen möglichst geheim gehalten. Als Pyxis (alt-/neugriechisch: πυξίς, pyxís) bezeichnet man unter anderem eine elfenbeinerne, metallene, hölzerne oder steinerne Büchse zur Aufbewahrung von Schmuckstücken oder anderen wertvollen Kleinutensilien. Dieser Begriff wurde auch zur Tarnung der Kompasse verwendet.
In Europa beschrieb der englische Gelehrte Alexander Neckam 1187 den nassen Kompass als eine magnetisierte schwimmende Nadel, die unter Seeleuten in Gebrauch war. Auch in einer kirchenkritischen Schrift des französischen Mönches Hugues de Bercy wurde die schwimmende Magnetnadel um 1190 erwähnt.
Auf der Arabischen Halbinsel wurde der Kompass nicht erfunden, da die arabischen Seeleute um die Jahrtausendwende über gute astronomische Kenntnisse verfügten und dank der gleichmäßigen Winde in ihrer Weltregion gut navigieren konnten. Im arabischen Raum lässt sich der nasse Kompass erst etwa einhundert Jahre nach Alexander Neckams Erwähnung nachweisen. Die erste schriftliche Erwähnung einer trocken, auf einem Stift spielenden Magnetnadel findet sich im Epistola de magnete von 1269, geschrieben von Petrus Peregrinus de Maricourt, womit der noch heute benutzte trockene Kompass erfunden war.
Der Kompass vom italienischen compasso „Zirkel, Magnetnadel“ abgeleitet, ist ein Instrument zur Bestimmung einer fest vorgegebenen Richtung, z. B. Himmelsrichtung, Navigations-Kurs, Peilrichtung. Ursprünglich ergänzte der Kompass in der Schifffahrt andere Methoden der Navigation, zum Beispiel anhand von Sonne, Sternen und Landmarken, Strömungen, Wellengang und Wassertiefe. Die älteste Ausführung des Kompasses ist die Kimme, die das Anpeilen des Polarsterns bei klarer Nacht erlaubt.
Das klassische Gerät ist der Magnetkompass, der anhand des Erdmagnetfeldes die Bestimmung der magnetischenNordrichtung und daraus aller anderen Himmelsrichtungen erlaubt. Andere Ausführungen sind elektronische Kompasse auf Basis von Hall-Sensoren oder Fluxgate-Magnetometern; mit Letzteren kann der Betrag und die Richtung des Erdmagnetfeldes auf ein 1/100.000 des Absolutwerts genau bestimmt werden. Ganz ohne Ausnutzung des Erdmagnetfeldes arbeiten Kreiselkompasse, deren Wirkungsweise auf der Erdrotation beruht. Die Richtungsmessung erfolgt bezüglich der geografischen Nord-Süd-Richtung anstatt zu den Magnetpolen, die von diesen rund 2000 Kilometer abweichen. Es gibt auch Kreiselinstrumente ohne Richtungsbezug (freie Kreisel wie den Kurskreisel), die allerdings periodisch nachgestellt werden müssen. Ebenfalls ohne Magnetfeld kommen Sonnenkompasse aus. Ein Kompass mit Peilvorrichtung wird auch Bussole genannt. Meist wird dieser Begriff in der Vermessungstechnik für Präzisions-Peilkompasse verwendet, vor allem in Österreich und Italien wird aber auch der einfache Wander– oder Marschkompass so genannt.
Bild 05: Wanderkompass mit ölgedämpfter Nadel
Der Kompass wurde ständig in Funktion und Anwendungsmöglichkeit weiterentwickelt und ist aus der heutigen Wissenschaft und Wirtschaft nicht mehr wegzudenken. Auch nur annähernd dies hier aufzählen zu wollen würde den Sinn und Rahmen dieses Kapitels sprengen.
2 Das Sternbild
Pyxis Genitiv: Pyxidis Abk.: Pyx dt.: Kompass
Das Sternbild Pyxis befindet sich südlich der Wasserschlange und breitet sich in RA von 8h26m43s bis 9h27m37s aus und reicht in Dec von -37°17´31“ bis auf -17°24´41“. Hierbei bedeckt es eine Fläche von 221 Quadratgrad und ist ab 63° nördlicher Breite südwärts sichtbar. Die Nachbarsternbilder sind im Sinne des Sonnenlaufs Hydra, Puppis, Vela und Antlia. Das Sternbild kulminiert Anfang Februar um Mitternacht.
2.1 Die Sterne
α Pyx ist ein 3m68 heller blauweißer Riesenstern der Spektralklasse B2III. Er hat mehr als 10 Sonnenmassen und eine 10.000fache Leuchtkraft bei einer Oberflächentemperatur von 24.300 K. Sein Licht kommt von der Position α 08h43m35,5s / δ -33°11´10,9“ und aus einer Entfernung von rund 845 Lichtjahren. Solche Sterne enden für gewöhnlich in einer Supernova. Er markiert im Sternbild den Drehpunkt der Kompassnadel.
β Pyx ist ein Doppelstern auf der Position α 08h40m06,1s / δ -35°18´30“, wobei ein 3m95 heller, gelber Überriese der Spektralklasse G7Ib-II von einem nur 12m5 lichtschwachen Stern im Abstand von 12,6“ auf dem Positionswinkel 118° begleitet wird. Sein Licht kommt von einer 5600 K heißen Sternoberfläche über eine Distanz von 420 Lichtjahren zu uns und markiert im Sternbild das kürzere südliche Ende der Kompassnadel.
γ Pyx hat eine Helligkeit von 4m03 die von der 4270 K heißen Oberfläche eines orange leuchtenden Riesenstern der Spektralklasse K3III über 209 Lichtjahre Distanz zu uns kommt. Seine Position ist α 08h50m31,9s / δ -27°42´35,4“ und markiert die Spitze der Kompassnadel.
T Pyx ist eine im Minimum 12m0 lichtschwache, rekurrierende (wiederkehrende) Nova in einer Entfernung von 3260 Lichtjahren. In den Jahren 1890, 1902, 1920, 1944 und 1966 erfolgten Helligkeitsausbrüche bis auf 6,5 mag. Am 14. April 2011 wurde der Beginn eines neuen Ausbruches entdeckt auf der Position α 09h04m41s / δ -32°22´47“.
Bei dem System handelt es sich um einen Doppelstern bestehend aus einem weißen Zwerg und einem nahen stellaren Begleiter. Bedingt durch die Nähe fällt Material vom Begleiter auf die Oberfläche des weißen Zwergs. Wird durch den ansteigenden Druck und die Temperatur der nukleare Brennpunkt von Wasserstoff erreicht, gibt es einen Nova-Ausbruch. Der weiße Zwerg selbst bleibt dabei unversehrt und das Material vom Begleiter sammelt sich erneut auf seiner Oberfläche an, was dann nach einigen Jahren zu einem erneuten Ausbruch führt.
Der Namensteil „T“ folgt den Regeln zur Benennung veränderlicher Sterne (s. POLARIS 101) und besagt, dass T Pyxidis der dritte veränderliche Stern ist, der im Sternbild Schiffskompass (lateinisch Pyxis) entdeckt wurde.
2.2 Deep Sky Objekte
NGC 2613 ist eine Spiralgalaxie vom Typ SAB(rs)cd und liegt auf der Position RA 08h33m22,8s / Dec -22°58´25,2“. Die Galaxie hat eine Winkelausdehnung von 7,2′ × 1,8′, eine scheinbare Helligkeit von 10m4 und eine Flächenhelligkeit von 12m6; sie wurde am 20. November 1784 von Wilhelm Herschel entdeckt.
NGC 2627 ist ein 8m4 heller offener Sternhaufen auf der Position RA 08h37m15s / Dec -29°57´01“. Zum Haufen gehören 40 Sterne. Trümpler klassifizierte ihn als Typ III2m. Bei einer Entfernung zu unserer Milchstraße von 6.630 Lichtjahren erscheint er uns unter einer Winkelauflösung von 9 Bogenminuten. Der deutsch-britische Astronom William Herschel entdeckte diesen Sternhaufen am 3. März 1793.
NGC 2658 ist ein offener Sternhaufen im Sternbild Kompass und hat eine Winkelausdehnung von 10,0′ und eine scheinbare Helligkeit von 9,2 mag. Er wurde am 28. Mai 1826 von James Dunlop entdeckt. Seine Koordinaten für das Äquinoktium 2000.0 lauten RA 08h43m27,3s und Dec -32°39′22″. Er gehört zur Trümpler-Klassifikation II2m, hat eine ermittelte absolute Helligkeit von -2.33 mag und leuchtet aus einer Entfernung von 6.600 Lichtjahren. Von Lübeck aus ist NGC 2658 so gut wie nicht zu beobachten, da er so weit südlich liegt, dass er für dortige Beobachter niemals mehr als 3° über den Horizont steigen wird. Andere Bezeichnungen für dieses Objekt sind Mel 90 und Cr 195.
NGC 2818, ein planetarischer Nebel in der südwestlichen Ecke des Sternbildes nahe zur Grenze zum Segel auf der Position RA 09h16m06,1s / Dec -36°37´37“, hat eine Winkelausdehnung von 1,4 x 1,4 Bogenminuten und eine scheinbare Helligkeit von 8,2 mag. Er liegt 10.400 Lichtjahre tief im Raum. In gleicher Sichtlinie liegt ein offener Sternhaufen. NGC 2818 wurde am 28. Mai 1826 vom schottischen Astronomen James Dunlop entdeckt.
Bild 09: NGC 2818 planetarischer Nebel – Hubble Space Telescope
2.3 Sonstiges
Bild 10: Sternbild Pyxis (IAU in Zusammenarbeit mit Sky and Telescope)
Literaturhinweise
Die großen Sternbilder I. Ridpath
Was Sternbilder erzählen G. Cornelius
Sternbilder von A bis Z A. Rükl
Quellenangaben der Abbildungen
Bild 01: Ausschnitt aus der Uranographia von J.E.Bode 1801
Bild 03: Darstellung in einer Abschrift der Epistola de magnete aus 14. Jahrhundert, verfasst 1269 von Petrus Pellegrinus de Maricourt de.wikipedia.org/wiki/Petrus_Peregrinus_de_Maricourt gemeinfrei
Bild 04: Kompassrose mit 360 Graden und 6400 NATO mil Ed Stevenhagen, gemeinfrei Wikipedia.org
Bild 08: NGC2658 Image créée à l’aide du logiciel Aladin Sky Atlas du Centre de Données Astronomiques de Strasbourg et des données publiques en format FIT de DSS (Digitized Sky Survey), Donald Pelletier 11 Jan 2016 from Wikimedia Commons, the free media repository unter Creative Commons Lizenz CC BY-SA 4.0
Der französische Astronom Abbé de la Caille hat 1751 bis 1752 insgesamt 14 der heute gültigen 88 Sternbilder, und davon viele für den südlichen Sternenhimmel, eingeführt. Dabei ist er oftmals sehr tiefgründig mit seinen Benennungen umgegangen. Ihm ging es vornehmlich darum, wissenschaftlich bedeutende Gerätschaften am Himmel zu verewigen. So benannte er ein Sternbild östlich von Schiffskiel und Achterschiff „Equuleus pictoris“ in der direkten Übersetzung aus dem Lateinischen “Der Pferdemaler”. Equuleus steht aber auch für Staffelei und gibt somit dem Sternbildnamen die Bedeutung “Staffelei des Malers”. Eigentlich wollte de Lacaille den „Bildermachern“ ein Denkmal an den Himmel setzen, waren ihm doch schon erste Kenntnisse von urzeitlichen Höhlenmalereien und anderen bedeutenden Bildwerken zuteil geworden, die Leben und Kunst der jeweiligen Epoche darstellten. Auf einem ersten Kartenwerk des südlichen Sternenhimmels, der Planisphère des Étoiles Australes, datiert von 1752 aber erst veröffentlicht im Jahr1756, erschienen erstmals seine neu eingeführten Sternbilder. Als Allegorie für das Sternbild Pictor verwendete er eine Malerstaffelei mit einer Farbenpalette. Die originale, französische Bezeichnung lautete: “Le Chevalet et la Palette”.
Bild 01: Erste Vorstellung des Sternbildes Maler von 1756
Sein von ihm verbesserter Himmelsatlas, Coelum australe stelliferum wurde posthum von Jean-Dominique Maraldi, 1763 in Paris herausgegeben. Auch hier soll in der bildlichen Darstellung eine Malerstaffelei mit einer Palette zu sehen sein.
Johann Ehlert Bode übernahm dieses Sternbild in seine Uranographia und benannte es „Pluteum Pictoris“ Pult (oder Arbeitsgerät) des Malers. Später wurde daraus die Bezeichnung Malerstaffelei.
Bild 02: Sternbild Maler in der Uranographia von J.E. BodeBild 03: Deviant Art.com Malerstaffelei
Die IAU kürzte 1930 die Benennungen letztlich auf den heute gültigen Sternbildnamen Maler ein. Im Internet fand ich bei Deviant Art.com folgende Erklärung zur Namengebung des Sternbildes:
Der Name “Equuleus Pictoris” ist der Name der alten Welt des Sternbildes “Pictor”, der Staffelei des Malers. “Equuleus” bedeutet Kleines Pferd oder Pony und auch Staffelei. “Pictoris” bedeutet “Der Maler”. Nach einigen Quellen wird das Wort “Equuleus” auch mit der Konstellation durch eine alte Sitte unter Künstlern verbunden, eine Leinwand auf ihrem Lasttier zu tragen, normalerweise ein Pony oder ein Easel. In älteren englischen Übersetzungen taucht nämlich die Bezeichnung „The Painter´s Easel“ auf. Das Wort Easel ist ein altes germanisches Synonym für “Esel”.
Die Staffelei des Malers stellt ein wichtiges Gerät dar, mit dem ein Künstler ein bildliches Kunstwerk erstellt. Ohne die Staffelei würde eine Leinwand auf dem Boden liegen und dazu führen, dass das aufgebrachte Gemälde verwittern und die aufgenommene Feuchtigkeit nicht absorbieren kann. Somit würde sich Schimmel entwickeln, was zur Zerstörung der Leinwand und zum Ruin eines potenziell großartigen Kunstwerks führen würde. Die Staffelei zeigt, unterstützt und schützt also die Grafik.
Die Cutie-Zeichnung ist ein Bild einer Staffelei aus dem Jahr 1756, dem gleichen Jahr, in dem die Konstellation Equuleus Pictoris erstmals veröffentlicht wurde. Die sieben Sterne repräsentieren die tatsächlichen Sterne, aus denen die Konstellation besteht. Alpha Pictoris (rot), Gamma Pictoris (blau) und Beta Pictoris (gelb) sind die größeren, helleren Sterne. Zeta Pictoris (grün), Eta1 Pictoris (orange), Eta2 Pictoris (lila) und Iota Pictoris (rosa) sind die nächsthelleren Sterne. Der Hersteller der Zeichnung hat das Arrangement auf das Bild der Konstellation auf dieser Website aufgebaut: www.astronomyfactbook.com/cons…@ Und er identifizierte die Sterne anhand dieser Sternenkarte: www.constellation-guide.com/wp…
2 Das Sternbild
Pictor Genitiv: Pictoris Abk.: Pic dt.: Maler
Das Sternbild Maler ist ein eher unscheinbares Sternbild, dem Schiffskiel und dem Achterschiff vorauseilend. Es ist erst ab dem 26sten Breitengrad sichtbar und ab -35° ist es circumpolar. Seinen Meridiandurchgang hat dieses Sternbild am 17. März 9:00 p.m. Zum Auffinden eignet sich der in unmittelbarer westlicher Nähe befindliche Stern Canopus sowie die südlich liegende Große Magellansche Wolke. Seine 247 Quadratgrad belegen eine Fläche in RA von 04h32m52s bis 06h52m03s und in Dec von -64°09´07“ bis auf -42°47´47“. Hierbei wird es umgeben von den Sternbildern Columba, Caelum, Dorado, Volans, Carina und Puppis. Letztere gehörten zusammen mit Vela (Segel) und Pyxis (Schiffskompass) dem ehemaligen Mastkorb zum antiken Sternbild Argo Navis. Der Schiffskompass wird als nächstes Sternbild beschrieben (Erscheinungsdatum voraussichtlich 1. April 2022). Nachfolgend nun die mit guten Amateurteleskopen zugänglichen Objekte im Sternbild Pictor. Leider sind die meisten der in diesem Areal befindlichen Objekte so lichtschwach, dass sie nur den Großteleskopen zugänglich bzw. nur auf langbelichteten Fotografien darstellbar sind.
Bild 04: Das Sternbild Pictor – Maler
2.1 Die Sterne
α Pic ist ein 3m3 blau-weißer Unterriese der Spektralklasse A6V, 10.000 K heiß und leuchtet weiss von der Position α 06h48m11,5s / δ -61°56´29“ und ist 100 Lichtjahre von uns entfernt. Sein Alter ist mit 660 Millionen Jahre angegeben und er entfernt sich vom Sonnensystem mit 20,6 km/s. Wenn wir uns statt auf Mond oder Mars mal auf Merkur begeben würden, sähen wir diesen Stern als Südpolarstern, analog unserem nordischen Polaris.
β Pic gehört zur Spektralklasse A3V und sein 3m85 helles weisses Licht braucht bis zu uns 63,5 Jahre. Es kommt von der realen Position α 05h47m17,1s / δ -51°03´59,5″ und verzögert sich, weil sich der Stern mit 20 km/s von uns fortbewegt. Im Jahr 1983 wurde um diesen Stern mit dem Infrarotsatelliten IRAS eine Ringscheibe aus festen Staub- und Eispartikeln entdeckt, die sich bis auf eine Entfernung von 400 AU vom Stern ausdehnt. Er war der erste Stern, bei dem dies direkt mittels eines optischen Teleskops beobachtet werden konnte. Beobachtungen weisen darauf hin, dass sich möglicherweise bereits zwei Planeten gebildet haben könnten. Letzte Hubble-Bilder weisen auf zwei getrennte Staubscheiben zusammen mit einem großen Planeten hin. 1995 deuteten Aufnahmen des Hubble Space Telescops auf eine Verbiegung des inneren Bereichs der Scheibe hin. Erneute Hubble-Weltraumteleskop-Beobachtungen mit der hochauflösenden Advanced Camera for Surveys konnten nachweisen, dass die verbogene Scheibe in Wirklichkeit aus zwei um 4 Grad geneigten, ineinander laufenden Staubscheiben besteht. Ein Erklärungsmodell ist die Annahme eines Planeten oder Braunen Zwerges von 20 Jupitermassen, der den Stern umrundet. Auf einem im Jahr 2003 mit dem VLT aufgenommenen Bild wurde im Jahr 2008 nahe bei Beta Pictoris ein Objekt mit etwa achtfacher Jupitermasse gefunden. Nachdem dieses in späteren Aufnahmen zunächst nicht mehr aufgetaucht war, konnte es auf einem im Herbst 2009 aufgenommenen, jedoch erst im Juni 2010 ausgewerteten Bild erneut ausfindig gemacht werden. Mit dieser Beobachtung wurde somit die Existenz eines Exoplaneten nachgewiesen, der Beta Pictoris in einer Entfernung von 8 AU umkreist, was etwa der Umlaufbahn des Saturn um die Sonne entspricht. Ferner war es damit erstmals gelungen, ein solches Objekt auf Positionen beiderseits seines Zentralgestirns festzuhalten. Möglicherweise ist ein Durchgang des Beta Pictoris b genannten Exoplaneten für einen leichten Helligkeitsabfall an Beta Pictoris verantwortlich, der im Jahr 1981 stattgefunden hat und bereits in einer 1995 veröffentlichten Analyse von auf La Silla gewonnenen Daten des Observatoriums der Universität Genf aufgefallen war. Bei weiteren Beobachtungen wurde festgestellt, dass Beta Pictoris b eine Rotationsdauer von nur etwa 8 Stunden hat.
γ Pic leuchtet orange mit 4m38 aus einer Entfernung von etwa 190 Lichtjahren. Sein Spektrum verrät einen K 1III-Stern mit einer Oberflächentemperatur von etwa 4600 K von der Position α 05h49m49,6s / δ -56°10´0“ . Entsprechend seiner Radialgeschwindigkeit entfernt er sich mit 16,7 km/s vom Sonnensystem.
δ Pic ist ein 4m72 helles, blauweißes Sternendoppel aus Riesensternen mit den Spektralklassen B0.5IV / B3III+09V und einer Photosphärentemperatur von 17.100 K. Seine Position ist α 06h10m17,9s / δ -54°58´07,1“. Die Hauptkomponente ist ein Bedeckungsveränderlicher vom b-Lyrae-Typ, der mit einer Periode von 1,673 Tagen schwach zwischen 4m65 und 4m9 variiert. Sein Licht braucht bis zu uns 1656 Jahre. Er bewegt sich mit 221 km/s vom Sonnensystem weg.
ζ Pic sendet uns sein gelbes, 5m44 helles Licht über eine Distanz von 118 Lichtjahren von der 6300 K heißen Photosphäre eines F7III-IV Spektraltypen.
η 1 Pic strahlt aus 85 Lichtjahren Entfernung als F5V-Spektraltyp mit 6600 K Photosphärentemperatur von der Position α 05h02m48,6s / δ -49°09´05,1“ mit einer Intensität von 5m37 . Sein Alter beträgt immerhin 2,15 Milliarden Jahre. Er wird in nur 11“ von einem 13m lichtschwachen Stern begleitet.
η 2 Pic leuchtet orangefarben 5m02 als Riesenstern der Spektralklasse K5III mit einer Photosphärentemperatur von 4100 K aus 440 Lichtjahren Entfernung von der Position α 05h04m58s / δ -49°34´40,2“.
ιPic ist ein Doppelstern, dessen 5m6 helle Hauptkomponente vom Spektraltyp F0 von einem 6m4 hellen Stern in 12,3“ Abstand begleitet wird.
λ Pic scheint mit 5m3 aus 343 Lichtjahren Entfernung. Er wechselt gerade von der Spektralklasse K0 nach K1III, wobei er sich von ehemals 5000 K abkühlt und ausdehnt.
Kapteyns Stern, er variiert leicht zwischen 8m9 und 9m22, ist ein roter Unterzwerg in einer Entfernung von gerade mal 12,8 Lichtjahren. Seine Oberflächentemperatur beträgt nur 3570 K. Er wurde 1897 vom Holländer Jacobus C. Kapteyn entdeckt. Seine Besonderheit ist seine große Eigenbewegung (die zweitgrößte nach Barnards Pfeilstern) am Himmel. Er legt jährlich 8,7“ zurück und erreicht so in zwei Jahrhunderten eine Verlagerung um einen scheinbaren Monddurchmesser. Er rast mit einer realen Geschwindigkeit von 280 km/s durchs Weltall. Seine derzeitige Position ist α 05h11m40,6s / δ -45°01´06,3“. Im Jahr 2014 zeigte die Analyse der Doppler-Variationen von Kapteyns Stern mit dem HARPS-Spektrographen, dass er zwei Super-Erden beherbergt – Kapteyn b und Kapteyn c. Kapteyn b ist der älteste bekannte potentiell bewohnbare Planet und schätzungsweise 11 Milliarden Jahre alt.
Bild 05: Größenvergleich Kapteyns Stern mit Erde, Jupiter und Sonne
AB Pic ist ein 9m13 schwacher, veränderlicher Stern der Spektralklasse K1Ve und befindet sich 150 Lichtjahre von unserer Sonne entfernt auf der Position α 06h19m12,9s / δ -58°03´15,3“. 2003 wurde ein Begleiter entdeckt, dessen Masse mit rund der 13-fachen Jupitermasse in dem Grenzbereich zwischen Planet und Braunem Zwerg liegt; er ist etwa 260 AE von AB Pictoris entfernt.
2.2 Deep Sky Objekte
Pic A ist ein intensiver 485 Millionen Lichtjahre entfernter Radiostrahler im nördlichen Teil des Sternbildes, eine Radiogalaxie, die einen 800.000 Lichtjahre langen Plasmastrahl aus einem supermassiven Schwarzen Loch in seiner Mitte abschießt. Am 29. Juli 2006 wurde in Pictor A ein Gammastrahlenausbruch – GRB 060729 – beobachtet, dessen extrem langes Röntgennachleuchten für 642 Tage, also fast zwei Jahre, nachweisbar war.
Bild 06: Pictor A; Composit Chandra X-Ray Observatory und Australian Telescope Compact Array
NGC 1705, eine 11m8 helle, 17 Millionen Lichtjahre entfernte irreguläre Galaxie vom Typ SA0pec mit einer Winkelausdehnung von 1,9´ x 1,4´ entsprechend einem Durchmesser von 2000 Lichtjahren. Ihre Position ist RA 04h54m13,5s / Dec -53°21´39,8“ Im Zentrum von NGC 1705 befindet sich ein gewaltiger Sternhaufen, der sich wahrscheinlich während einer Phase heftiger Sternentstehung, eines sogenannten Starbursts, vor etwa 26 bis 31 Millionen Jahren gebildet hat. Als Studienobjekt eignet sich NGC 1705 besonders, da manche Astronomen vermuten, dass Zwerggalaxien zu den ersten Sternansammlungen im frühen Universum gehörten. NGC 1705 wurde am 5. Dezember 1834 von dem britischen AstronomenJohn Herschel entdeckt.
Bild 07: NGC 1705 vom HST
SPT-CL J0546-5345 ist einer der massereichsten Galaxienhaufen, die jemals im frühen Universum gefunden wurden. Es wird angenommen, dass er 7 Milliarden Lichtjahre entfernt ist. Er wurde 2008 am South Pole Telescope durch den Sunyaev-Zel’dovich-Effekt entdeckt. Der Cluster hat eine Rotverschiebung von z = 1.067. Nachfolgende Beobachtungen und Studien mit Spitzer, Chandra und optischen Teleskopen erlaubten, Clustermitglieder zu identifizieren und die Rotverschiebung zu messen. Unter Verwendung der Geschwindigkeitsdispersion wurde die Clustermasse auf 1015 Sonnenmassen geschätzt. Als Position wurden RA 86.6542° und Dec -53.7589° angegeben. Nachfolgende Aufnahme wurde freigegeben von Astrophysics Science Division at NASA / GSFC.
Bild 08: Der Galaxienhaufen SPT-CL J0546-5345 NASA / Goddard Space Flight Center
2.3 Sonstiges
Literaturhinweise
Taschenatlas der Sternbilder J. Klepesta / A. Rükl
Das Sternbild Winkelmaß wurde 1752 von Nicolas Louis de Lacaille auf seinen Karten des südlichen Sternenhimmels eingeführt. Als Allegorien wählte er einen Zeichenwinkel und ein darunter liegendes Lineal. Dass er dieses Sternbild mit dieser nüchternen Benennung nahe dem hellsten Stern im Centaur, Toliman, und zwischen dem Rücken des Wolfs und dem Schwanz des Skorpions platzierte, zeigt eigentlich, wie wenig dichterische Phantasie Lacaille besaß. Den Wert des Begriffes Winkelmaß wusste er aber allemal zu schätzen, ist hier doch einer der Grundpfeiler der Mathematik verewigt worden.
Das Winkelmaß ist auch eines der drei Hauptsymbole der Freimaurerei neben dem Buch des heiligen Gesetzes und dem Zirkel. Es ist ein Symbol für die Gewissenhaftigkeit. Am rechten Winkel des Winkelmaßes soll der Mensch seine Handlungen ausrichten, nämlich nach Recht und Menschlichkeit. Das Winkelmaß ist auch das Amtsabzeichen des Meisters vom Stuhl.
Zitat: Das Winkelmaß (frz. Equerre, engl. Square), das stets vom Stuhlmeister als Zeichen seiner Würde getragen wird, bildet auf dem Altar mit Bibel und Zirkel die drei “Großen Lichter” der freimaurerischen Symbolik. “Das Winkelmaß ist das Symbol der Gewissenhaftigkeit, das die menschlichen Handlungen nach dem Gesetz der Rechtwinkeligkeit, d. h. nach Recht, Gerechtigkeit und Menschlichkeit ordnet und richtet, auf dass dieselben immer regelrecht seien und sich innerhalb der rechten Schranken der göttlichen und menschlichen Gesetze halten. Es wird angelegt an die menschlichen Handlungen, auf dass sie erkannt werden als frei von Eigennutz, getrieben von innerem Drang, ohne äußeren Zwang, in voller Erkenntnis des Rechten und Pflichtmäßigen.”
Die uralte Bedeutung des Winkels in Form des Winkelmaßes als konstruktives Werkzeug des rechten Winkels geht sogar bis auf altägyptische Gottheiten, zum Beispiel Osiris als Richter über die Toten, zurück.
Das Winkelmaß ist auch eine in der Heraldik beliebte Wappenfigur, die sehr unterschiedlich dargestellt und oftmals neben der Waage als Allegorie für Recht und Gerechtigkeit verwendet wurde.
Lineare Winkelmaße zeichnen sich dadurch aus, dass sie bei Drehung des Winkels erhalten bleiben, und bei einer Aufteilung einer Drehung in zwei Teildrehungen das Winkelmaß zur Gesamtdrehung gleich der Summe der Winkelmaße der Teildrehungen ist.
Daher gibt es zwei ausgezeichnete Maßeinheiten für den Winkel, die sich beide von einem intuitiven Bezugssystem von vorne, hinten, rechts und links ableiten, den Vollwinkel (Vollkreis) und den rechten Winkel (Viertelkreis). Diese beiden Konzepte finden sich schon in den frühesten Spuren protowissenschaftlicher Methoden früher Hochkulturen.
So auch das Polygon, das über den Zusammenhang zwischen Innenwinkel und Zentriwinkelgeometrischen Zugang zum Winkel ermöglicht. Hier ist insbesondere das Quadrat zu nennen, bei dem beide einen rechten Winkel bilden. Während der rechte Winkel heute nur insofern als Maß dient, sprachlich und natürlich auch rechentechnisch „gerade“ von „schiefen“ Winkeln zu unterscheiden und „spitze“ von „stumpfen“, also ein Prüfkriterium zur Zuordnung boolescher Werte (ja oder nein) ist, ist der Vollwinkel gesetzliche Maßeinheit. Bis etwa 1980 war aber auch der rechte Winkel als Rechter mit dem Einheitenzeichen ∟ in Deutschland üblich.
Der Kreis, der über das Konzept der Unterteilung in Kreissektoren, wie sie etwa als „Tortenstück“ geläufig ist, in enger Beziehung zum arithmetischen Prinzip der Bruchrechnung steht, ist der Vollwinkel. Er ist der kleinste Winkel, um den ein Strahl, um seinen Ursprung gedreht, wieder seine Ausgangsrichtung erreicht. Im Gradmaß wird der Vollwinkel in 360 gleich große Teile unterteilt. Ein solcher Teil wird als ein Grad bezeichnet und mit dem Einheitenzeichen ° gekennzeichnet. 1 Grad wiederum wird in 60 Bogenminuten unterteilt und mit dem Zeichen ‘ deklariert. 1 Bogenminute wird in 60 Bogensekunden unterteilt und hat die Kennung “.
Im Winkelmaß Zeit wird ein Vollwinkel in 24 Stunden unterteilt. Es wird in der Astronomie zur Angabe des Stundenwinkels und der Rektaszension verwendet:
Ein anderes Messprinzip der Winkelweite erfolgt über das Verhältnis von Höhenunterschied zu Länge im Sinne eines Steigungswinkels, die Berechnung erfolgt über den Tangens des Winkels. So wurden zum Beispiel die Höhen früh- und vorzeitlicher Bauten festgelegt und so werden heute noch Straßensteigungen berechnet und angegeben.
An Stelle eines ebenen Winkels kann man natürlich generell dieses Längenverhältnis zweier senkrecht zueinander stehender Strecken angeben. Dies entspricht dann immer dem Tangens des Winkels im zugrundeliegenden rechtwinkligen Dreieck. In der Luftfahrt gibt man so die Gleitzahl eines Flugzeuges an.
Für Mathematiker gibt es noch viele weitere Anwendungsbeispiele, die allesamt beweisen, wie wichtig das Winkelmaß früher war und heute immer noch ist.
2 Das Sternbild
Norma Genitiv: Normae Abk.: Nor dt.: Winkelmaß
Der heute noch fälschlicherweise kursierende Begriff „Lineal“ für dieses Sternbild steht im Zusammenhang mit der ursprünglichen Benennung durch de La Caille als „Norma et Regula“ dem „Winkelmaß und Lineal“. Lacaille, der für die Bezeichnungen „seiner“ Sternbilder häufig technische Geräte verwandte, formte es aus Sternen, die zuvor zum Wolf und zum Altar gehörten. Es soll einen Winkelmesser und ein Lineal darstellen, die von Seefahrern zur Positionsbestimmung genutzt wurden. Letzteres ist wegen seiner verhältnismäßigen Bedeutungslosigkeit sehr schnell wieder aus den Atlanten verschwunden und ist, analog der Gans beim Füchschen, von der IAU 1930 nicht mehr als gültiger Sternbildteil berücksichtigt und anerkannt worden. Mit der gleichzeitigen Festlegung der heute gültigen Sternbildgrenzen durch IAU wurden mehrere Sterne dem Skorpion zugeschlagen. Das Winkelmaß hat auch keine Sterne mit der Bezeichnung Alpha oder Beta mehr. Die ehemaligen Sterne Alpha Normae und Beta Normae gehört heute zum Skorpion und tragen dort die Bezeichnung N und H Scorpii.
Das Winkelmaß ist ein relativ unscheinbares Sternbild südlich des markanten Skorpions. Keiner seiner Sterne ist heller als die 4. Größenklasse. Durch dieses Sternbild zieht sich das Band der Milchstraße und es enthält aus diesem Grund eine Vielzahl von nebligen Objekten, offenen Sternhaufen und Kugelsternhaufen. In Richtung des Winkelmaßes, fast verborgen durch unsere Milchstraße, befindet sich der so genannte Norma-Galaxienhaufen (Abell 3627). Hierbei handelt es sich um eine riesige Ansammlung von Galaxien in einer Entfernung von etwa 200 Millionen Lichtjahren. In ihm liegt das Zentrum des so genannten Großen Attraktors, auf den sich „unser“ Galaxienhaufen, der Virgo-Haufen, zubewegt.
Das Winkelmaß liegt so weit südlich, dass es von Mitteleuropa aus nicht beobachtet werden kann. Seine Fläche mit 165 Quadratgrad Inhalt erstreckt sich in RA von 15h12m14s bis 16h36m08s und in Dec von -60°26´08“ bis auf -42°16´03“. Somit ist es erst ab dem 30sten Breitengrad vollständig sichtbar. Seine Nachbarn sind Scorpion, Lupus, Circinus, Triangulum Australe und Ara. Die Hilfslinien werden in den heutigen Sternatlanten sehr unterschiedlich gezogen. Die gebräuchlichste Art ist in der Sternkarte dargestellt. Etwas genauer wären zwei Linien ε – γ 2 und γ 1 – η .
Bild 05: Das Sternbild Norma – Winkelmaß
2.1 Die Sterne
γ1 und γ2 Nor erscheinen dem bloßen Auge als Doppelstern. Tatsächlich handelt es sich um Sterne, die nicht durch die Schwerkraft aneinander gebunden sind, sondern von der Erde aus gesehen fast in einer Richtung liegen. γ1 steht 2m49,5s östlicher und 4´14,6“ nördlicher von γ2.
Sie markieren den südlichen Eckpunkt des fast rechten Winkels vom Sternenrhombus.
γ2 Nor ist ein 4m01 gelb leuchtender Riesenstern, der sich bei 2,16-facher Sonnenmasse auf deren 10-fachen Durchmesser aufgebläht hat. Er gehört der Spektralklasse G8III an mit einer Temperatur an der Photosphäre von 4700K. Er wandert auf dem horizontalen Zweig und hat sein Heliumbrennen bereits begonnen. Dieser Stern befindet sich auf der Position α 16h19m50,4s / δ -50°09´19,8“ in etwa 450 Lichtjahren Entfernung von der Sonne und bewegt sich mit einer Radialgeschwindigkeit von -29 km/s auf uns zu. Gamma2 Normae ist ein enger Doppelstern mit einem 10m0 Begleiter.
γ1 Nor ist ein 4m97 heller und 1500 Lichtjahre entfernter blauer Überriese der Spektralklasse F91a mit einer Photosphärentemperatur von 6000 K, der bei 6,6-facher Sonnenmasse ihren 160-fachen Durchmesser angenommen hat. Seine derzeitige Position ist α 16h17m0,9s / δ -50°04´05,2“ , von der er sich mit einer Radialgeschwindigkeit von -16,0 km/s auf die Sonne zubewegt. Sein Alter wird auf rund 55 Millionen Jahre geschätzt.
Der Meteorstrom der Gamma-Normiden hat hier seinen Radianten.
δ Nor gehört einer sehr ungewöhnlich zusammengesetzten Spektralklasse an. In seinem 4m74 hellen bläulich-weißen Licht von einer 7700 K heißen Photosphäre befinden sich K-Linien eines A3-Sterns, Wasserstofflinien eines A7-Typen und Metalllinien eines F0-Sterns. Dies führt zu der Typisierung kA3hA7mF0III. Dieser rund 70 Millionen Jahre alter Riesenstern befindet sich auf der Position α 16h06m29,4s / δ -45°10´23,5“, von der aus er sich mit einer Radialgeschwindigkeit von -15,5km/s auf die Sonne zubewegt. Noch ist er 125 Lichtjahre weit weg. Wegen Änderungen in seiner Radialgeschwindigkeit wurde ein Begleiter gefunden, der Delta Normae zum astrometrischen Doppelstern macht. Im Sternbild markiert er die nördliche Rhombusecke.
ε Nor ist ein echtes Doppelsternsystem in 400 Lichtjahren Entfernung. Die beiden sichtbaren, 4m54 und 6m68 hellen Komponenten können aufgrund ihres weiten Abstandes von 22,8 Bogensekunden bereits mit einem kleinen Teleskop beobachtet werden. Der hellere Partner gehört der Spektralklasse B4V mit einer Oberflächentemperatur von rund 17.000 K an. Der lichtschwächere Stern besitzt wiederum einen Begleiter, dessen Abstand so gering ist, dass er nur spektroskopisch nachgewiesen werden kann. Epsilon Normae markiert die westliche Ecke des Sternenvierecks.
η Nor markiert mit 4m02 die östliche Ecke des Sternenrhombus auf der Position α 16h03m12,9s / δ -49°13´46,9“. Sein gelbes Licht kommt von der 5000 K heißen Sternoberfläche eines G8III-Riesen, der sich aufgebläht und dabei entsprechend abgekühlt hat, und braucht bis zu uns 220 Jahre.
ι Nor ist ein 140 Lichtjahre entfernter enger Doppelstern, dessen 5m6 und 5m8 helle Komponenten einander im Abstand von 0,5“ in 26,9 Jahren umkreisen. In einem Winkelabstand von 11 Bogensekunden wird im Teleskop ein dritter, nur 11m0 lichtschwacher Stern sichtbar. Dieser ist jedoch nur 55 Lichtjahre entfernt und gehört physikalisch nicht zu dem System.
μ Nor ist ein extrem leuchtkräftiger blauer Überriese der Spektralklasse O9Iab in 4660 Lichtjahren Entfernung. Seine Helligkeit variiert zwischen 4,87 und 4,98m. Es handelt sich um einen veränderlichen Stern vom Typ Alpha Cygni.
R und T Nor sind veränderliche Sterne vom Typ Mira, deren Helligkeit sich über längere Zeiträume stark ändert. R Nor ändert seine Helligkeit von 6m5 nach 13m9 in 507,5 Tagen und T Nor hat eine Periode von 242,6 Tagen.
S Nor ist ein pulsationsveränderlicher Stern vom Typ der Cepheiden, dessen Licht zwischen 6m12 und 6m77 mit einer Periode von 9,754 Tagen schwankt. Er liegt inmitten des offenen SternhaufensNGC 6087.
2.2 Deep Sky Objekte
Menzel 3, (Mz3) der Ameisennebel, ist ein junger 13m8 heller planetarischer Nebel. Der Name Ameisennebel kommt von seinem Aussehen, da er dem Thorax einer Ameise ähnelt. Er breitet sich strahlenförmig mit einer Geschwindigkeit von ca. 50 km/s aus. Er zeigt keine Spur von molekularen Wasserstoff-Ausstößen. Der Ameisennebel wurde 1922 von Donald Howard Menzel auf Fotografien des Bruce-24-Inch-Teleskops an der Außenstation des Harvard College Observatory in Arequipa in Peru entdeckt. Er steht auf der Position RA 16h17m13,4s / Dec -51°59´10,3“. Er hat eine Winkelausdehnung von 0,83´x 0,2´ und ist noch 3000 Lichtjahre von uns entfernt. Er nähert sich uns mit einer Radialgeschwindigkeit von -21,2 km/s.
Bild 06: Der Ameisennebel Menzel 3
NGC 6134, auch Bennett76 genannt, ist ein schöner offener Sternhaufen, der sich scheinbar vor einer Dunkelwolke befindet. Hierdurch kommen seine 179 Haufensterne mit Einzelhelligkeit zwischen 13m und 15m trotz einer schwachen Konzentration zur Haufenmitte gut zur Geltung. Die Gesamthelligkeit ist mit 7m2 angegeben, seine Entfernung mit 913 pc und die Position mit RA 16h27m46s / Dec -49°09´06“.
Bild 07: NGC 6134 vor einer Dunkelwolke
NGC 6164 / NGC 6165 bezeichnen die beiden hellen Strahlungskeulen eines 6m7 mag hellen bipolaren Emissionsnebels im Sternbild Winkelmaß, der etwa 1236 Parsec entsprechend 4030 Lichtjahre von der Erde entfernt ist und seinerseits vor einem riesigen leuchtenden Gasnebel liegt. Er wurde am 1. Juli 1834 von John Herschel mit einem 18-Zoll-Spiegelteleskop entdeckt, der dabei „Neb violently suspected immediately preceding a double star“ notierte. Wir finden dieses Gebilde auf der Position RA 16h3352,3s / Dec -48°06´40“ mit einer Winkelausdehnung von 1,0´x 0,3´. Es wird vom Stern HD 148937 durch Ionisation zum Leuchten angeregt.
Bild 08: Gasnebel NGC 6164 (NASA 201603030)
NGC 5946 steht als schöner Kugelsternhaufen auf der Position RA 15h35m28,5s / Dec -50°39´34,8“ mit einer Gesamthelligkeit von 9m6 im östlichen Teil des Sternbildes Norma, etwa mittig und zur Sternbildgrenze zum Wolf.
Bild 09: Kugelsternhaufen NGC 5946
NGC 6067 ist ein offener Sternhaufen in 6000 Lichtjahren Entfernung auf der Position RA 16h13m12s / Dec -54°13´0“. Er enthält etwa 100 Sterne der 10. Größenklasse. Seine Gesamthelligkeit von 5m6 verteilt sich auf eine Winkelausdehnung von 13´x13´. Man findet ihn etwa 1° nördlich des Sterns κ Normae. Obwohl schon mit bloßem Auge am dunklen Himmel erkennbar, ist der Sternhaufen am besten mit dem Fernglas oder einem Teleskop zu beobachten. Bei 12-Zoll-Öffnung zeigen sich etwa 250 zum Haufen gehörende Sterne. Entdeckt von James Dunlop im Jahr 1826 wird NGC 6067 von John Herschel als „ein hervorragend reicher und großer Cluster“ und von Stephen James O’Meara als „einer der schönsten offenen Sternhaufen am Himmel“ beschrieben. Seine hellsten Sterne haben eine scheinbare Helligkeit von etwa 8m und 84 Sterne sind heller als 12m. NGC 6067 befindet sich in der Norma-Sterne-Wolke im Norma-Arm der Milchstraße. Sein Alter wird mit rund 102 Millionen Jahre angegeben und er enthält 893 Sonnenmassen und die beiden folgenden Cepheiden: QV340 Normae ist ein gelber Riese der Spektralklasse G0Ib, dessen Helligkeit zwischen 8m26 und 8m60 über 11,28 Tage variiert, während der schwächere ZV340 zwischen 8m71 und 9m03 mit einer Periode von 3,79 Tagen variiert.
Bild 10: Offener Sternhaufen NGC 6067
NGC 6087 ist mit 5m4 bei einer Winkelausdehnung von 12´x 12´ der hellste offene Sternhaufen im Winkelmaß. Er ist bereits mit bloßem Auge als nebliges Fleckchen zu erkennen. Er steht auf der Position RA 16h18m48s / Dec -57°56´0“ und enthält etwa 40 Sterne der 7. bis 11. Größenklasse. Der hellste Stern ist der Veränderliche S Normae. Der Sternhaufen ist 3500 Lichtjahre von uns entfernt.
Bild 11: Offener Sternhaufen NGC 6087
Norma-Galaxienhaufen (auch Abell 3627) ist ein großer Galaxienhaufen am Südhimmel an der Grenze des SternbildesWinkelmaß (Norma) zum Sternbild Südliches Dreieck. Mit einer Entfernung von etwa 65 Mpc (210 Mio. Lichtjahre) ist er uns deutlich näher als der Coma-Haufen und daher der nächste bekannte reiche Galaxienhaufen. Seine mittlere Radialgeschwindigkeit beträgt 4870 km/s und korrespondiert mit einer Rotverschiebung von z=0,016. Die Galaxien sind aufgrund ihrer Entfernung von 200 Millionen Lichtjahren sehr lichtschwach. Um sie zu beobachten benötigt man schon ein größeres Teleskop. Obwohl der Galaxienhaufen gleichzeitig nahe und hell ist, kann er jedoch nur schwer beobachtet werden, da er in Richtung der Kante unseres Milchstraßensystems liegt, so dass er durch interstellaren Staub teilweise verdeckt wird und die Beobachtung durch die große Dichte an Vordergrundsternen zusätzlich erschwert wird. Er entzog sich daher lange Zeit größerer Aufmerksamkeit seitens der Astronomen. Das änderte sich, als eine Forschergruppe um Donald Lynden-Bell, die als „die sieben Samurai“ bekannt wurde, die Existenz eines Großen Attraktors postulierte, der die Bewegung aller Galaxien in der kosmischen Nachbarschaft beeinflusst und sich hinter der so genannten „Vermeidungszone“ (engl. zone of avoidance) in Richtung des Sternbildes Winkelmaß befinden müsste. Seit 1996 gilt der Norma-Galaxienhaufen als ein wesentlicher Bestandteil des Großen Attraktors und wird eingehend untersucht. Im Zentrum des Haufens befinden sich die beiden cD-GalaxienESO137-6 (PGC 57612) und ESO 137-8 (PGC 57649).
Bild 12: Zentrum von Abell 3627 mit den Riesengalaxien ESO 137-6 und ESO 137-8
Shapley 1 (Sp-1; PK 329+02.1) wird auch Fine-Ring Nebula genannt. Es handelt sich um einen selten schönen, gleichförmigen 12m6 hellen Ringnebel mit einer Winkelausdehnung von 1,1´, was unter Berücksichtigung der Entfernung einem Durchmesser von einem Drittel Lichtjahr entspricht. Im Zentrum befindet sich ein Doppelsternsystem mit einer Umlaufdauer von 2,9 Tagen.
Shapley-1 steht auf der Position RA 15h51m42,7s / Dec -51°31´30,5“ in 1000 Lichtjahren Entfernung. Sein Zentralstern ist ein Zwerg mit einer Helligkeit von 14m0. Er wurde 1936 von Harlow Shapley entdeckt.
Bild 13: Planetarischer Nebel Shapley-1
Menzel-1, (Mz-1). Der bipolare Nebel wurde 1922 von Donald Howard Menzel auf Fotografien des Bruce-24-inch-Teleskops an der Außenstation des Harvard-College-Observatorium in Arequipa in Peru entdeckt. Trotz seiner vergleichsweisen hohen Helligkeit von 12m0 wurde er nur selten eingehender untersucht. Ein Modell erklärt seine Struktur anhand der Projektion einer dreidimensionalen Sanduhr-förmigen Hülle mit einer von der Taille zu den Polen abnehmenden Dichte. Seine Winkelausdehnung beträgt 76“ x 23“ auf der Position RA 15h34m17s / Dec -59°09´09“. Mit einer radialen Ausdehnungsgeschwindigkeit von 23 km/s wird sein Alter auf 4.500 bis 10.000 Jahre geschätzt. Man geht bei dem Zentralstern, einem weißen Zwerg, von 0,63 ±0,05 M⊙ aus. Die Entfernung zu uns beträgt 3400 Lichtjahre.
Bild 14: Der bipolare Nebel Menzel-1
Hen 2-161 (PK331-02.2) ist ein weiterer bipolarer Nebel. Er befindet sich auf der Position RA 16h24m37,7s / Dec -53°22´34,1“ und wurde erst 1967 von Karl Gordon Henize entdeckt.
Bild 15: Der bipolare Nebel Henize 2-161
2.3 Sonstiges
Literaturhinweise:
Taschenatlas der Sternbilder Klepesta, I. / Rükl, A.
„Fliegen sind doch recht nervige Viecher, die nicht nur den meisten Menschen sondern auch so manchem Tier echt auf den Keks gehen. Und so´n Biest ist als Sternbild am Himmel?“ Wie oft habe ich diesen Satz oder ähnliche Äußerungen gehört, wenn ich das Sternbild Musca mit seinem deutschen Namen – Fliege – bei einem meiner Vorträge an der Sternwarte zu Lübeck erwähnte. Die uns bekannte Stubenfliege (Musca domestica) ist eine Art aus der Gattung Musca, die wiederum zur Familie der Echten Fliegen (Muscidae) gehört.
Bild 01: Hausfliege – Musca domestica
Es gab eine Zeit, da existierten zwei Sternkonstellationen mit dem Namen Fliege.
Die nördliche Fliege, lateinisch musca borealis, war kein Sternbild des Nordhimmels sondern eine kleine Sterngruppe im östlichen Teil des offiziellen Sternbildes Widder angrenzend an die Sternbilder Dreieck und Perseus, ähnlich in der Art, wie die Plejaden dem Sternbild Stier angehören. Hauptstern war der Stern 41 Arietis mit dem Eigennamen Bharani. Jacob Bartsch, Schwiegersohn von Johannes Kepler, benannte 1624 diese Sternengruppe aber in Vespa (Vespa) = Wespe um, weil Johann Bayer 1603 auch eine Biene (Biene) = Apis am Südhimmel eingeführt hatte, die heutige Fliege. Wie aus der Wespe eine nördliche Fliege wurde, ist nicht näher beschrieben. Sie erscheint jedenfalls 1687 bei Johannes Hevelius in dessen Atlas. Der Franzose Ignace-Gaston Pardies bildete aus denselben Sternen im Jahr 1674 das Sternbild Lilium, die französische Lilie, welches sich aber nicht behaupten konnte. Nach den 1782 erschienenen Atlanten von Johann Elert Bodes tritt die nördliche Fliege aber nicht mehr in Erscheinung.
Bild 02: Nördliche Fliege – Ausschnitt aus J. E. Bodes SternatlasBild 03: Südliche Biene – Ausschnitt aus Bodes Uranographia
Die südliche Fliege existiert erst seit 1598, damals noch unter der Bezeichnung „de Bij“. 1595 bis 1597 vermaßen der niederländische Navigator Pieter Dierkzoon Keyser und der Kartograph Frederick de Houtman auf ihrer Fahrt zu den Gewürzinseln, heute Indonesien, im Auftrag von Peter Plantius den südlichen Sternenhimmel, damit dieser genauere Daten für seine Sternkarten erhalte. Dabei führten die Beiden 12 neue Sternbilder ein, darunter das Sternbild Apis = Biene.
1598 erscheint das Sternbild somit als Biene auf Sternkarten von Petrus Plancius, das 1600 von Jodocus Hondius auf einem von ihm veröffentlichten Himmelsglobus übernommen wurde. 1602/03 erschien die Biene auch auf Globen von Willem Janszoon Blaeu. Im Jahr 1629 gelang es diesem, zahlreiche Druckplatten aus dem Nachlass von Jodocus Hondius zu erwerben. Diese dienten ihm zur Herausgabe eines eigenen Atlas‘. Von den anfänglich 60 Karten stammten 37 aus dem Hondius-Nachlass. Auf allen Druckplatten ließ er den Namen Hondius durch den Namen Blaeu ersetzen.
1603 übernimmt Johann Bayer das südliche Sternbild Apis in seine Uranometria. Hier deutet er die Biene in religiösem Kontext als ein Insekt, das in der Geschichte von Samson erwähnt wird. Als Samson zum Jüngling herangewachsen war, verließ er die heimatlichen Berge und besuchte die Städte der Philister. Dort verliebte sich Samson in die Tochter eines Philisters aus Timna. Er überwand die Einwände seiner Eltern und durfte die Frau heiraten. Auf dem Weg zur Brautwerbung nach Timna entfernt sich Samson von der Begleitung seiner Eltern. Er begegnet einem Löwen: „Da kam der Geist des Herrn über Simson, und Simson zerriss den Löwen mit bloßen Händen, als würde er ein Böckchen zerreißen“. Er findet im Kadaver einen Bienenstock; er nimmt vom Honig und teilt ihn mit seinen Eltern, ohne dessen Herkunft zu verraten.
Johann Bayer bediente sich zur Erstellung seiner astronomischen Veröffentlichungen mehrerer Quellen. Die älteste war der Almagest von Ptolemäus. Daneben besaß er Aufzeichnungen des dänischen Astronomen Tycho Brahe, der über Jahre hinweg genaue Sternpositionen am Nordhimmel bestimmt hatte. Brahes Sternkatalog wurde erst 1602 in Druckform herausgegeben, jedoch waren zuvor handschriftliche Exemplare in Umlauf, von denen Bayer offensichtlich eines besaß. Daneben führte Bayer eigene Beobachtungen durch. Für den südlichen Sternhimmel bediente er sich der Aufzeichnungen des niederländischen NavigatorsPieter Dirkszoon Keyser und von Pedro de Medina.
1752 benannte Nicolas Louis de Lacaille auf seiner 1756 veröffentlichten Planisphere des Étoiles Australes das Sternbild in La Mouche um, latinisiert Musca auf dem Coelum Australe Stelliferum, welcher erst postum 1763 veröffentlicht wurde. Später heißt sie auch Musca Australis in Abgrenzung zur Musca Borealis im Widder nach Johannes Hevelius, die, wie oben beschrieben, auf Keysers und de Houtmans Biene zurückgeht.
Als die nördliche Fliege aus den Atlanten verschwand, wurde aus der südlichen Fliege (Musca Australis) schlicht Fliege = Musca.
2 Das Sternbild
Musca Genitiv: Muscae Abk.: Mus dt.: Fliege
Die Fliege ist ein kleines, aber gut erkennbares Sternbild direkt südlich des Kreuzes des Südens. Sie enthält einen auffälligen Stern 2. Größe und ein kompaktes Trapez aus nur wenig schwächeren Sternen. Durch das Sternbild zieht sich das Band der Milchstraße. Auffällig ist eine ausgedehnte Dunkelwolke, der Kohlensack, dessen südlicher Teil in die Fliege hineinragt. Im Prismenfernglas bietet die Himmelsregion um die Fliege einen prächtigen Anblick. Um diesen zu genießen, muss man sich aber bis zum 14ten Breitengrad nach Süden begeben. Erst von da ab ist es vollständig sichtbar; es kulminiert um den 31. März um Mitternacht. Seine Fläche von 138 Quadratgrad erstreckt sich in RA von 11h19m26s bis nach 13h51m08s und in Dec von -75°41´46“ bis auf -64°38´17“ hoch. Seine Nachbarn sind von Nord im Uhrzeigersinn Kreuz des Südens, Centaur, Schiffkiel, Chamäleon, Paradiesvogel und Zirkel. Das kleine Sternbild beherbergt mehrere helle Sterne, jedoch ohne Eigennamen, und mehrere interessante Objekte.
α Mus ist mit 2m69 der hellste Stern. Er gehört der Spektralklasse B2IV-V an und sein bläuliches Licht kommt von einer rund 23.000 K heißen Photosphäre aus der Position α 12h37m08s / δ -69°08´7,9“ und über eine Distanz von 306 Lichtjahren zu uns. α Muscae ist ein blauer Überriese mit der 20.000fachen Leuchtkraft unserer Sonne und pulsiert leicht, wobei sich seine Helligkeit über einen Zeitraum von nur 2 Stunden und 12 Minuten um etwa 1 % verändert. Er gehört zum Typ der Cepheiden. In einem Abstand von 2600 AU befindet sich ein 12m8 lichtschwacher Begleitstern in einem Winkelabstand von 29,6“, der ihn in 45.000 Jahren einmal umkreist.
β Mus hat eine Gesamthelligkeit von 3m04 und sein bläuliches Licht verrät uns einen B2V-Spektraltypen mit 24.000 K Oberflächentemperatur. Es erreicht uns erst nach 311 Jahren Reisezeit bei einer Ausgangsposition von α 12h46m16,9s / δ -68°06´29,1“. β Muscae ist auch ein Doppelsternsystem. Die beiden Komponenten, 3m7und4m0 hell, gehören den Spektralklassen B2 und B3 an. Um das System in Einzelsterne aufzulösen, benötigt man ein mittleres Teleskop, da der Winkelabstand nur 1,4“ beträgt.
γ Mus ist mit 3m84 erst fünfthellster Fliegenstern, aber auch er ist ein bläulich leuchtender B5V-Spektraltyp mit rund 20.000 K Oberflächentemperatur. Seine Position ist α 12h32m28,1s / δ -72°07´58,7“. Von dort braucht das Licht 324 Jahre bis zu uns.
δ Mus gehört zur Spektralklasse K2III mit einer Oberflächentemperatur von rund 4500 K und leuchtet in orange 3m61 hell über eine Entfernung von 91 Lichtjahren von der Position α 13h02m15,8s / δ -71°32´55,7“.
ε Mus steht auf der Position α 12h17m34.6s / δ -67°57´38,4“ und leuchtet variabel als halbregelmäßig Veränderlicher mit einer Periode von 40 Tagen zwischen 4m0 und 4m3 als M5III-Stern in orangerot von der rund 3000 K heißen Sternoberfläche eines Riesensterns über eine Entfernung von 302 Lichtjahren.
μ und λ Mus bilden einen weiten optischen Doppelstern im Nordosten des Sternbildes Fliege. My ist mit 4m75 der lichtschwächere, zur Spektralklasse K4III gehörende Stern in 432 Lichtjahren Entfernung, während Lambda mit 3m6 nicht nur deutlich heller, sonders als A7III-Typ mit 8500 K auch wesentlich heißer ist und mit 128 Lichtjahren auch einen deutlich geringeren Abstand zu uns hat. Stellt man ihre mittlere Position von α 11h46m54,9s / δ -66°45´19,2“ im Teleskop ein, kann man den schönen orangerot / weißen Farbkontrast beider Sterne genießen.
η Mus befindet sich auf der Position α 13h15m15s / δ -67°53´40,4“, leuchtet bläulich mit 4m8 von der 14.000 K heißen Photosphäre eines B8V-Sterns aus 406 Lichtjahren Entfernung.
Nova Muscae 1991 ist ein binäres System, das einen Schwarzlochkandidaten enthält. Es ist eines der wenigen Schwarzlochsysteme, die als Röntgen-Novae klassifiziert sind, die gelegentlich Ausbrüche von Röntgenstrahlen zusammen mit sichtbarem Licht und anderen Energieformen erzeugen. Die beiden Sterne umkreisen sich mit einem Zeitraum von 10,4 Stunden und liegen etwa 3,2 Millionen Kilometer auseinander. In einem System wie diesem zieht das schwarze Loch Gas von der Oberfläche des Begleitsterns, und das Gas bildet eine Akkretionsscheibe um das schwarze Loch. Im Falle einer Röntgen-Nova ist der Gasstrom recht langsam und dünn, und die Scheibe um das Schwarze Loch bleibt relativ kühl. Ein Teil des Gases fällt auch in das schwarze Loch. Das Schwarze Loch in Nova Muscae 1991 hat die siebenfache Sonnenmasse, während der Begleitstern drei Viertel der Sonnenmasse und ein Drittel der Sonnenhelligkeit hat. Die äußeren Schichten des Sterns wurden wahrscheinlich durch die Supernova-Explosion, die das Schwarze Loch verursachte, weggeblasen. (Zitatende)
2.2 Deep Sky Objekte
Der Kohlensack ist eine ausgedehnte Dunkelwolke in 600 Lichtjahren Entfernung. Er gehört aber überwiegend zum Sternbild Crux und ragt nur mit einem kleinen südlichen Teil in das Sternbild Fliege. Da der Kohlensack aber sehr markant ist, eignet er sich, ebenso wie das Kreuz des Südens, sehr gut zum Auffinden der Fliege. Seine mittlere Position ist RA 12h50m / Dec -62°30´. Es handelt sich hier um zwei sich überlagernde Dunkelwolken, deren vordere, wie oben bereits erwähnt, eine Entfernung von 600 Lichtjahren zu uns aufweist, während die hintere noch einmal 140 Lichtjahre tiefer im Raum steht. Die Gesamtwinkelausdehnung beträgt 7° x 5°, was etwa 70 x 50 Lichtjahren entspricht.
NGC 4833ist ein 7m4 heller Kugelsternhaufen in 19.000 Lichtjahren Entfernung. In einem mittleren Teleskop kann der Randbereich in Einzelsterne aufgelöst werden. Er befindet sich auf der Position RA 12h59m35s / Dec -70°52´28,6“ und hat eine Winkelausdehnung von 13,5 Bogenminuten und die Konzentrationsklasse VIII (Klassifizierungs-system nach Shapley-Sawyer für Kugelsternhaufen). Er wurde von Nicolas Louis de Lacaille am 17. März 1752 während seines Aufenthaltes in Kapstadt entdeckt. Zum Auffinden eignet sich der sehr nahe stehende helle Stern Delta Muscae.
Bild 06: Kugelsternhaufen NGC 4833
NGC 5189, ein 9m7 heller Planetarischer Nebel, ist die abgestoßene Gashülle eines Sterns in einer Entfernung von 2.600 Lichtjahren auf der Position RA 13h33m32,9s / Dec -65°58´26,6“. Der helle Teil des Nebels besitzt eine ungewöhnliche längliche, S-förmige Struktur, die bereits in einem kleinen Teleskop erkennbar ist. Der gesamte Nebel weist eine Winkelausdehnung von 2,33´x 2,33´ auf. Der Zentralstern ist nur 20m0 lichtschwach und hat die Katalogbezeichnung HD117622. Dieses Leuchten erreicht uns nach 3.000 Jahren und wurde am 1. Juli 1826 von James Dunlop entdeckt.
Bild 07: Planetarischer Nebel NGC 5189
IC 4191 ist ein weiterer planetarischer Nebel im Sternbild Fliege, der im Jahr 1907 von der Astronomin Williamina Fleming entdeckt wurde. Seine heutigen Koordinaten sind: RA 13h8m47,5s / Dec -67°38´35“. Auch hier weist die Struktur der auseinander driftenden Gaswolken eine ungewöhnlich längliche Form auf. Um den Zentralstern befindet sich eine helle, noch dichte und dadurch scheinbar erst vor astronomisch kurzer Zeit abgestoßene Hülle.
NGC 4372 zählt mit 8m0 zu den hellen Kugelsternhaufen und liegt an der „Musca Dark Cloud“, auf Deutsch: Musca-Dunkelwolke. NGC 4372 gehört der inneren galaktischen Scheibe an. Nach Harris (2003) ist er 23.000 Lj vom galaktischen Zentrum entfernt und 19.500 Lj vom Sonnensystem. Seine Ausdehnung ist schwer abzuschätzen, weil die Fülle der Milchstraßensterne kaum die Außengrenze erahnen lässt. Kukarkin (1974) gibt 18,6′ an. Damit lässt sich ein echter Durchmesser um 100 Lj berechnen, was bei Kugelsternhaufen im Durchschnitt gut passt. NGC 4372 ist einzigartig, weil er (im Gegensatz zu den meisten anderen Kugelsternhaufen) nur eine Sternpopulation enthält, die dazu noch sehr metallarm ist. In seiner Nähe befindet sich der helle Stern Gamma Muscae.
Bild 08: Kugelsternhaufen NGC 4372 und Staubschleier der Musca-Dunkelwolke
2.3 Sonstiges
Bild 09: Das Sternbild Musca – Fliege
Literaturhinweise:
Internet Astronomie.de Anette u. Holger Manz
Vorstellung der Gestirne/Himmelsatlas Johann Ehlert Bode
Sternbilder von A – Z Antonin Rükl
Die großen Sternbilder Ian Ridpath
POLARIS z. B. Nr. 103, 114 E.-Günter Bröckels
Taschenatlas der Sternbilder Josef Klepesta/Antonin Rükl
Quellenangaben der Abbildungen:
Bild 01: https:www.flickr.com/photos/usdagov/8674435033/sizes/o/in/photostream/Wikimedia Commons, public domain
Bild 02: J. E. Bodes Sternatlas 1782 Vorstellung der Gestirne auf XXXII Tafeln, Replik; Ausschnitt aus Tafel XIV Sternbildgrenzen nachcoloriert
Bild 03: Ausschnitt aus J. E. Bodes Uranographia M DC XXXXVIII (1648) Bild Nr. 29 Nachdruck 1801 Berlin, Deutsches Museum München urn.nbn.de:bvb:210-03-001560890-5
Das Sternbild Inder ist ein nur sehr mäßig ausgeprägtes Sternbild am südlichen Himmel. Als neuzeitliches Sternbild hat es keine klassische Mythologie. Nur zwei seiner Sterne sind heller als die 4. Größenklasse. Mit diesem Sternbild sollen keinesfalls die amerikanischen Indianer verstirnt werden sondern die Eingeborenen der indischen Gewürzinseln. Auf der ersten niederländischen Ostindienexpedition Ende des 16. Jahrhunderts durch den Indischen Ozean hatte der Navigator Pieter Dirkszoon Keyser von dem Kartografen Petrus Plancius den Auftrag, die Positionen der hellen Sterne des Südhimmels zu vermessen und legte dabei, unterstützt von dem Forscher Frederick de Houtman, einschließlich des Inders – „De Indiaen“ – insgesamt zwölf neue Sternbilder fest. Aus Sicht der Holländer auf dieser Forschungsreise waren die Bewohner der Gewürzinseln allesamt „Inder“. Somit hat Pieter Dirkszoon Keyser bei der Benennung des Sternbilds die Bewohner Indiens gemeint und nicht, wie schon erwähnt, die Ureinwohner des amerikanischen Kontinents. Mit letzteren hatte schon der Isländer Leif Erikson um 1000 unserer Zeit Kontakte. Als Christobal Colombo 1492 auf San Salvador und 7 Jahre später Amerigo Vespucci auf dem echten amerikanischen Kontinent landete, hatten sie Kontakte zu Menschen, die sie anfangs „Inder“ nannten. Nach unbestätigten Reiseberichten des Ferdinand Magellan brachte dieser erste Eingeborene aus Patagonien – Feuerland – mit nach Europa. Die Namengebung zu diesem Sternbild kam den Niederländern jedoch, wie oben erwähnt, auf ihren Ostindienreisen. Plancius übernahm sie 1597/1598 erstmals auf einen Himmelsglobus, der 1600 von dem Kartograf und Verleger Jodocus Hondius veröffentlicht wurde. Auf diesem glich die illustrierende Darstellung des „Indus“ dem Bild von einem eingeborenen Südasiaten. Johann Bayer übernahm die zwölf neuen Sternbilder in seinen 1603 erschienenen HimmelsatlasUranometria. Hier erscheint das Sternbild Indus als ein kurz gelockter Jüngling mit Lendentuch, der vier Pfeile in den Händen trägt. In dieser Weise wird es auch in späteren Himmelsatlanten und Sternkarten dargestellt wie in dem von Johannes Hevelius aus dem Jahr 1690. Hier ist der „Indus“ als ein Naturvolkangehöriger ohne Federschmuck dargestellt, mit einem Speer in der einen und drei weiteren in der anderen Hand. Die Federhaube eines amerikanischen Indianers tauchte erst auf Sternkarten und Himmelsgloben in der 1. Hälfte des 18. Jahrhunderts auf. Im Französischen heißt das Sternbild „le Indien“, im Englischen „Indian“ und im Deutschen „Inder“. In jüngerer Zeit hat sich unter amerikanischem Einfluss die falsche Bezeichnung „Indianer“ eingeschlichen.
Bild 01: Indus auf Johann Gabriel Doppelmayrs Sternkarte des südlichen Himmels von 1730Bild 02: Prodomus Astronomia Volume III Firmamentum Sobiescianum, sive Uranographia von Johann Hevelius 1690
2 Das Sternbild
Indus Genitiv: Indi Abk.: Ind dt.: Inder
Das Sternbild Indus liegt zwischen den auffällig hellen Sternen Alpha Gruis Alnar und Alpha Pavonis Peacock. Sein Areal erstreckt sich in Rektaszension von 20h28m41s bis 23h27m59s und in Deklination von -74°27´16“ bis hinauf nach -44°57´32“ und belegt wegen mehrfacher Ein- und Ausbuchtungen 294 Quadratgrad am Himmel. Seine Nachbarn sind von Norden im Sinne des Sonnenlaufs die Sternbilder Mikroskop, Schütze, Teleskop, Pfau, Oktant, Tukan und Kranich. Wegen seiner noch sehr südlichen Nordgrenze ist dieses Sternbild von Mitteleuropa unsichtbar und erst ab dem 16ten Breitengrad vollständig sichtbar. Es kulminiert um den 13ten August zu Mitternacht. Die Hilfslinien zur figuralen Darstellung sind auf einigen modernen Sternkarten falsch eingezeichnet und befinden sich dort überwiegend außerhalb der „indischen“ Sternbildgrenzen.
Bild 03: Sternbild Indus mit falschen HilfslinienBild 04: Sternbild Indus mit Nachbarsternbildern
2.1 Die Sterne
α Ind, der mit 3m11 hellste Stern im Inder, ist ein 120 Lichtjahre entfernter Stern der Spektralklasse K0 III-IV, der den Wasserstoff in seinem Kern erschöpft hat und sich von der Hauptreihe des HRD zum Riesenstern entwickelt hat. Sein Name Alnair ist arabischen Ursprungs und bedeutet „der Erleuchtete“. Diesen Namen trägt auch der Stern α Gruis im Sternbild Kranich. In China wird dieser Stern Pe Sze, „der zweite Stern von Persien“ genannt, eine dort von den Jesuiten-Missionaren eingeführte Bezeichnung. α Indi hat etwa die doppelte Masse der Sonne und ist geschätzt eine Milliarde Jahre alt. Er hat sich auf das 6-fache des Sonnendurchmessers ausgedehnt. Die effektive Temperatur der Photosphäre beträgt 4.900 K, was ihm den charakteristischen orangen Farbton verleiht. Er wird von zwei M-Typen begleitet, die mindestens 2.000 Astronomische Einheiten vom Hauptstern entfernt sind.
β Ind ist 3m67 hell und gehört als Riesenstern mit 4.400 K an der Photosphäre der Spektralklasse K1 III an. β Indi hat einen visuellen Companion mit der Bezeichnung CCDM J20548-5827B und einer scheinbaren Helligkeit von nur 12m5. Sein orange-rötliches Licht kommt von der Position α 20h54m48s / δ -58°27´15“ über eine Entfernung von 600 Lichtjahren zu uns.
γ Ind ist mit nur 6m1 mit dem bloßen Auge nicht mehr sichtbar.
δ Ind ist ein Doppelsternsystem mit der Gesamthelligkeit von 4m4. Die Primärkomponente hat eine Helligkeit von 4m8, während die Komponente B eine solche von 5m96 hat. Das System auf der Position α 21h57m55s / δ -54°59´33“ stehend ist etwa 188 Lichtjahre von der Sonne entfernt. Die binäre Natur dieses Systems wurde vom südafrikanischen Astronomen William Stephen Finsen 1936 entdeckt. Das Paar hat eine Umlaufzeit von 12,2 Jahren, eine Halbachse von 0,176 Bogensekunden und eine Exzentrizität von etwa 0,03. Beide Komponenten wurden von mehreren Autoren mit einer Sternklassifikation von F0 IV aufgeführt, was darauf hindeutet, dass es sich um gelb-weiß gefärbte Unterriesen handelt.
ε Ind ist mit 11,82 Lichtjahren Entfernung einer der nächsten Nachbarn der Sonne. Bei einer scheinbaren Helligkeit von 4m69 ist der Stern noch freiäugig zu erkennen. Epsilon Indi A gehört zur Spektralklasse K4-5V mit einer Oberflächentemperatur von 4.450 K. Sein Alter wird auf 1,3 Milliarden Jahre geschätzt. Er ist nach Barnards Pfeilstern und Kapteyns Stern der Fixstern mit der drittgrößten Eigenbewegung. Sie beträgt 4,7 Bogensekunden pro Jahr – das entspricht etwa einem Monddurchmesser in 400 Jahren. In rund 1000 Jahren wird das Sternsystem ins benachbarte Sternbild Tukan hinüberwechseln. In den Jahren 2002 und 2003 wurde Epsilon Indi als Mehrfachsystem erkannt. Auf der Suche nach Planeten außerhalb unseres Sonnensystems fanden Astronomen zwei sich gegenseitig umkreisende Braune Zwerge im Abstand von 1200 AE zur Hauptkomponente. 2002 wurde der mit 23m6 etwas hellere Epsilon Indi B gefunden, der zur Spektralklasse T1V mit einer Oberflächentemperatur von 1200 K gehört und etwa 50 Jupitermassen aufweist. Ein Jahr später wurde der mit 31m3 leuchtschwächere Epsilon Indi C gefunden, der der Spektralklasse T6V angehört, eine Oberflächentemperatur von nur 850 K und etwa 30 Jupitermassen aufweist. Der Abstand der beiden Komponenten B und C beträgt etwa 2,1 AE; beide haben einen Durchmesser, der etwa dem des Planeten Jupiter entspricht. Dieses Mehrfachsystem befindet sich bei α 22h03m21,7s / δ -56°47´10“.
ζ Ind ist mit 4m9 auf der Position α 20h49m29s / δ -46°13´36,6“ der nördlichste mit bloßem Auge sichtbare Stern im Indus. Er gehört der Spektralklasse K5III an, ist 4.000 K heiß und sein Licht braucht bis zu uns 410 Jahre.
η Ind steht mittig auf einer Verbindungslinie von Alpha nach Beta auf der Position α 20h44m02,3s / δ -51°55´15,5“ und leuchtet dort weiß als Unterriese mit 4m2 von der 7.700 K heißen Oberfläche eines A9IV-Spektraltyps über eine Entfernung von 78,8 Lichtjahren.
θ Ind ist ein 100 Lichtjahre entferntes Doppelsternsystem. Die beiden 4m5 und 6m9 weiß leuchtenden Komponenten der Spektralklassen A5 und A7 können bei einem gegenseitigen Abstand von 6,7 Bogensekunden schon mit einem kleinen Teleskop getrennt werden.
2.2 Deep Sky Objekte
Im Inder befinden sich sehr viele Galaxien. Die meisten von ihnen sind jedoch nur den Großteleskopen zugänglich, weil sie einerseits sehr kleine Flächenhelligkeiten haben und mehrere 10 bis 100 Millionen Lichtjahre entfernt sind. Zu den helleren gehören NGC 7049, NGC 7090, NGC 7205 und IC 5152.
NGC 7049 ist die Bezeichnung einer SA(s)-Galaxie im Sternbild Indus. Sie wurde schon am 4. August 1826 von dem schottischen Astronomen James Dunlop entdeckt, aber erst später im New General Catalogue verzeichnet. NGC 7049 hat eine scheinbare visuelle Helligkeit von 10m6 und, bei einer Winkelausdehnung von 4,4′ × 2,9′, eine Flächenhelligkeit von 13m3. Sie ist jedoch aufgrund ihrer Position RA 21h19m0,3s und Dec −48° 33′ 43″ zu weit südlich, um von Mitteleuropa aus beobachtet werden zu können. Eine Aufnahme in eine Raumtiefe von 94 Millionen Lichtjahren mittels des Hubble-Weltraumteleskops zeigt ihr Aussehen im sichtbaren Licht, das einen ungewöhnlichen Staubring erkennen lässt.
Bild 05: NGC 7049 HST
NGC 7090 ist eine Balkenspiralgalaxie vom Hubble-Typ SBc im Indus. Sie hat eine scheinbare Helligkeit von 10m7 und, bei einer Winkelausdehnung von 7,8′ × 1,53′, eine Flächenhelligkeit von 12m9. Bei dem Objekt handelt es sich um eine sogenannte Edge-On-Galaxie, d. h. wir sehen sie genau in Kantenstellung auf der Position RA 21h36m24,3s / Dec -54°33´24,3“. Die Spiralarme erscheinen hier nur als dunkle staubhaltige Wolken, beleuchtet vom hellen Zentrum der Galaxie. Auf dem HST-Foto sind auch viele leuchtende Wasserstoffgebiete zu erkennen, in denen Sternengeburten stattfinden. Das Objekt wurde am 4. Oktober 1834 vom britischen AstronomenJohn Herschel entdeckt.
Bild 06: NGC 7090 vom HST
NGC 7205 ist eine Spiralgalaxie vom Hubbletyp SA(s)bcHII mit einem sehr kleinen, hellen Kern und ausgeprägten Staubstreifen zwischen den Spiralarmen. Sie liegt auf der Position RA 22h08m34,4s / Dec -57°26´33“ und somit auf der Grenze zum Sternbild Tukan. Ihre visuelle Helligkeit von 10m8 ergibt bei einer Winkelausdehnung von 3,55´x 1,95´ einen realen Durchmesser von 90.000 Lichtjahren und eine Flächenhelligkeit von 12m9. Ihre Photonen erreichen uns nach 80 Millionen Jahren. NGC 7205 wurde am 10. Juli 1834 von John Herschel entdeckt. Sie hat zwei Begleitgalaxien, die Spiralgalaxie NGC 7205 A und die scheinbar irreguläre Galaxie PGC 388132.
NGC 7205A steht auf der Position RA 22h07m31s / Dec -57°27´43,2“ und hat eine Gesamthelligkeit von 15m15.
PGC 388132 befindet sich auf der Position RA 22h08m28,9s / Dec -57°55´44“ und hat eine Winkelausdehnung von 0,76´ x 0,41´. Sie ist nur Großteleskopen und Photonenjägern zugänglich.
IC 5152 ist die Bezeichnung einer irregulären Galaxie im Sternbild Inder und wurde im Jahr 1908 von dem Astronomen DeLisle Stewart entdeckt. Ihre Position ist RA 22h03m00s / Dec -51°17´00“, sie steht 5,8 Millionen Lichtjahre tief im Raum und gehört trotz dieser Entfernung zu den Galaxien, deren einzelne Sterne am leichtesten aufgelöst und beobachtet werden können. Es ist eine offene Frage, ob IC 5152 noch als entferntes Mitglied zur lokalen Gruppe gehört.
Bild 07: IC5152 Detailaufnahme vom HST
2.3 Sonstiges
Literaturhinweise:
Internet, Wikipedia div. Autoren
Der große Kosmos-Himmelführer I. Ridpath / W. Tirion
Internet Astronomie.de G. Bendt
Wikimedia Commons div. Autoren
Taschenatlas der Sternbilder J. Klepesta, A. Rükl
Wikimedia.org div. Autoren
Quellenangaben der Abbildungen:
Bild 01: Darstellung des Pavo und Indus auf Johann Gabriel Doppelmeyr’s Sternkarte des südlichen Himmels von 1730 – Reproduktion, gemeinfrei
Bild 02: Wikipedia Datei: Johannes Hevelius – “Firmamentum Sobiescianum sive Uranometria” Tavola Emisfero Australe 1690, Replik, gemeinfrei
Bild 03: aus Wikimedia Commons, the free media repository Creativ Commons Attribution Share Alike 3.0 T. Bronger Free Software Foundation CCBYSA3.0
Bild 04: IAU Constellations
Bild 05: from Wikipedia, the free encyclopedia NGC 7049 – image from the HST´s Advanced Camera for Surveys
Bild 06: ESA/Hubble & NASA Acknowledgement R. Tugral, gemeinfrei
Bild 07: Wikipedia, the free encyclopedia – IC 5152 by the Hubble Space Telescope
Die Serie der Sternbildbeschreibungen wird fortgesetzt.
Dieses Sternbild ist, wie sein Name schon andeutet, am südlichen Sternenhimmel zu Hause. Das Sternbild setzt sich aus drei hellen Sternen zusammen und ist daher auch auffälliger als sein nördliches Gegenstück, das Dreieck. Als Urheber des Sternbildes werden der niederländische Navigator Pieter Dirkszoon Keyser und sein Helfer Frederick de Houtman genannt, die 1595–97 im Auftrag von Petrus Plancius den südlichen Himmel vermaßen. Beschrieben wurde es bereits 1500 von einem spanischen Navigator genannt Mestre João. Auch der italienische Seefahrer und Entdecker Amerigo Vespucci erwähnt diese auffällige Sternenkonstellation im Bericht über seine zweite Reise von 1502. Schon 1589 findet sich das südliche Dreieck auf einem Himmelsglobus des Petrus Plancius. Tatsächlich steht es dort aber auf dem Kopf, weil er hierfür Berichte von Forschungsreisenden, namentlich Andreas Corsal und Pedro de Medina, verwendete aber keine genaueren Koordinaten hatte. Erst auf dem Planciusschen Globus von 1598, der die Vermessungen von Keyser und de Houtman umsetzt, stellt es sich richtig dar. Von Letzteren übernahm Johann Bayer das südliche Dreieck in seinen 1603 erschienenen HimmelsatlasUranometria. Er wird aufgrund der maßgeblichen Bedeutung seines Werkes in älteren Schriften auch als Sternbildautor angegeben.
Zur Bedeutung des Dreiecks als geometrische oder mathematische Figur und als Symbol unterschiedlichster Genese siehe die Sternbildbeschreibung Triangulum – Dreieck in der POLARIS 29.
2 Das Sternbild
Triangulum Australe Genitiv: Trianguli Australis Abk.: TrA dt.: südliches Dreieck
Von Mitteleuropa aus ist das Südliche Dreieck unsichtbar. Eine richtige, vollständige Beobachtung wird erst südlich des nördlichen Wendekreises, also südlich von 19° bis 90° Süd möglich. Auf der Erde sind die Wendekreise die beiden Breitenkreise von je 23° 26′ 05″ nördlicher bzw. südlicher Breite. Auf ihnen steht die Sonne am Mittag des Tages der jeweiligen Sonnenwende im Zenit. Die Wendekreise haben vom Äquator je einen Abstand von 2609 km. Das südliche Dreieck nimmt am Himmel eine Fläche von 110 Quadratgrad ein und erstreckt sich in RA von 14h56m01s bis 17h13m53s und in Dec von −70°30′42″ bis −60°15′52“. Umgeben ist es von den Nachbarsternbildern Winkelmaß, Zirkel, Paradiesvogel und Altar. Durch das Südliche Dreieck zieht sich das Band der Milchstraße.
Bild 01: Karte des Sternbilds Südliches Dreieck
2.1 Die Sterne
α TrA, mit 1m91 der hellste Stern im Triangulum Australe, ist etwa 405 Lichtjahre entfernt. Es handelt sich um einen orange leuchtenden Stern der Spektralklasse K2IIb-IIIa, mit der neunfachen Masse und der 2.000fachen Leuchtkraft unserer Sonne. Der nicht historische Eigenname Atria ist ein Kürzel für Alpha Trianguli Australe. Er markiert die südwestliche Ecke des Dreiecks auf der Position α 16h 48m 39,9s / δ -69°01´39,8“.
β TrA hat den Kunstnamen Betria, steht auf der Position α 15h50m50s / δ -63°17´0“ und markiert die nördliche Ecke des Dreiecks mit einer Helligkeit von 2m83. Dieser Stern gehört zur Spektralklasse F0 und ist 42 Lichtjahre von uns entfernt.
γ TrA steht an der östlichen Ecke des Dreiecks auf der Position α 15h14m10s / δ -68°30´0“ und leuchtet dort mit 2m87 als A1V-Spektraltyp über eine Entfernung von 183 Lichtjahren.
δ TrA leuchtet gelb mit 3m86 als 5.000 K heißer G5II-Stern auf der Position α 16h15m26,3s / δ -63°41´08“. Sein Licht braucht bis zu uns rund 620 Lichtjahre. δ TrA ist ein optischer Doppelstern. Die Hauptkomponente wird von einem nur 12m0 hellen Stern in 30“ Abstand begleitet.
ε TrA steht mittig auf einer Verbindungslinie von Beta nach Gamma. Die Koordinaten lauten: α 15h36m43,2s / δ -66°19´01,3“. Dort sehen wir einen 4.400 K heißen Riesenstern der Spektralklasse K0III, der sein 4m11 helles Licht über eine Entfernung von 202 Lichtjahren zu uns sendet. Mit einem Begleiter von 9m36 Helligkeit in 81,9“ Abstand bildet er einen optischen Doppelstern.
2.2 Deep-Sky-Objekte
NGC 5844 ist ein 13m2 planetarischer Nebel auf der Position α 50h10m40,7s / δ -64°40´25“ mit einer Winkelausdehnung von 1,22 Bogenminuten und einer Entfernung von 1372 pc. Dieses Objekt wurde am 2. Mai 1835 von John Herschel entdeckt.
ESO 99-4 ist eine mit 16m4 nur Großteleskopen zugängliche, peculiäre Galaxie. Ihre sehr eigentümliche Form rührt wahrscheinlich von einem früheren Verschmelzungsprozess her, durch den sie über die visuelle Erscheinung hinaus verformt wurde, wobei der Hauptkörper durch dunkle Staubstreifen weitgehend verdeckt wird. ESO 99-4 liegt auf der Position α 15h24m59,4s / δ -63°07´37,4“ mit einer Winkelausdehnung von 1,0´ x 0,6´ in einem reichhaltigen Feld von Vordergrundsternen und ist etwa 395 Millionen Lichtjahre entfernt.
Bild 02: ESO 99-4 (Galaxienverschmelzung)
NGC 5979 ist ein weiterer planetarischer Nebel in diesem Sternbild. Er wurde am 25. April 1835 von J. F. W. Herschel entdeckt. Wir finden ihn auf der Position α 15h47m41s/ δ -61°13´05,6“. Der Nebel ist mit 11m5 visueller Helligkeit kein leichtes Beobachtungsobjekt und der Zentralstern hat sogar nur 20m0.
Bild 03: NGC 5979 (Planetarischer Nebel)
NGC 6025 ist ein offener Sternhaufen in etwa 2.700 Lichtjahren Entfernung. Er enthält etwa 60 Sterne, die heller als die 7. Größenklasse sind. Seine Gesamthelligkeit ist 5m1. Bereits im Prismenfernglas bietet er einen schönen Anblick. Er steht an der nördlichen Sternbildgrenze zum Winkelmaß auf der Position α 16h03m17s / δ 60°25´54“ und hat eine Ausdehnung von 12´ entsprechend 4,5 Lichtjahren. Sein Alter wird mit 80 Millionen Jahren angegeben. Entdeckt wurde er von Abbe de Lacaille 1751. Die Konstellation der helleren Sterne in diesem offenen Haufen hat eine Ähnlichkeit mit dem Sternbild Coma Berenice.
NGC 6156 ist eine Balkenspiralgalaxie vom Hubble-Typ SBc mit einer Helligkeit von 11m6 bei einer Entfernung von ca. 45 Millionen Lichtjahren. Ihre Koordinaten sind α 16h34m52,5s / δ -60°37´08″. Auf dieses schöne Feuerrad schauen wir direkt von oben und können in größeren Teleskopen sehr schön die Spiralarme um einen sehr kleinen Kern erkennen.
2.3 Sonstiges
Literaturhinweise:
POLARIS 29 E.-G. Bröckels et al.
Internet Wikipedia div. Autoren
Quellenangaben der Abbildungen:
Bild 01: Wikimedia Commons, the free media repository
Das hier beschriebene Sternbild ist an einem sternlichtschwachen Teil des südlichen Sternenhimmels eingegliedert worden. Sein Dasein unter den Sternen verdankt es dem Einfallsreichtum des französischen Astronomen Nicolas Louis de La Caille, welcher auf diese Weise bedeutende Erfindungen seiner Zeit auf seinen 1752 bis 1756 gefertigten Karten des südlichen Sternenhimmels verewigte. Welche ungeheure Bedeutung gerade dieses Instrument für die Menschheit erlangen sollte, konnte er nur erahnen.
Bild 01: Das Sternbild Mikroskop auf einer mittelalterlichen Sternkarte
Angefangen hatte alles damit, dass ein holländischer Brillenschleifer aus Middelburg namens Hans Lippershey, oder eines seiner Kinder, per Zufall herausfand, dass zwei in einem bestimmten Abstand hintereinander in die Sichtlinie zu einem dahinter befindlichen Gegenstand gebrachte Linsen einen Vergrößerungseffekt auslösten. Am 25. September 1608 wurde von Lippershey für eine entsprechende Apparatur ein niederländisches Patent beantragt.
Zacharias Janssen (Sacharias Joanidis), ein griechischstämmiger, fähiger Optiker und Hausierer, ebenfalls aus Middelburg, reiste als Hausierer viel, betrieb in Amsterdam eine Firma, die jedoch in Konkurs ging und war auch bekannt als Fälscher von Kupfer-, Gold- und Silbermünzen. Dadurch kam er öfter mit dem Gesetz in Konflikt und wurde auch verurteilt. Dieser Mann erfragte / beantragte im Oktober 1608 in den Niederlanden ebenfalls ein Patent für eine optische Vergrößerungsapparatur.
Kurze Zeit später wurde von Jacob Metius (echter Name Jacob Adriaansz), einem niederländischen Linsenschleifer und Instrumentenbauer, Anspruch auf das beantragte Patent erhoben. Lippershey demonstrierte seine Erfindung vor Moritz von Oranien, Graf von Nassau-Dillenburg und Kapitän-General der Vereinigten Land- und Seestreitkräfte, in Den Haag. Trotzdem erlangten weder er noch Janssen noch Metius ein Patent, da das Gerät zu einfach und zu leicht zu kopieren sei.
Janssen verkaufte seine Apparaturen als Mikroskope noch im gleichen Jahr auf einer Messe in Paris. Das erste Mikroskop Janssens war ein einfaches Rohr mit Linsen am Ende. Die Vergrößerung reichte von drei- bis neunmal.
Und so kam 1609 der italienische Astronom Galileo Galilei in den Besitz eines solchen Geräts, welches er zu einem der ersten leistungsfähigen Teleskope entwickelte. Noch 1609 kam Galileo Galilei mit einem von ihm selbst entworfenen und vom Instrumentenbauer nach seinen Plänen angefertigten Teleskop an die Öffentlichkeit.
Zacharias Janssens 1611 geborener Sohn, Johannes Zachariassen, sollte später unter Eid schwören, dass Hans Lippershey die Idee seines Vaters für das Teleskop gestohlen habe.
Ein Mikroskop (griechisch μικρός mikrós „klein“; σκοπεῖν skopeín „betrachten“) ist ein Gerät, das es erlaubt, Objekte stark vergrößert anzusehen oder bildlich darzustellen. Dabei handelt es sich meist um Objekte bzw. die Struktur von Objekten, deren Größe unterhalb des Auflösungsvermögens des menschlichen Auges liegt. Eine Technik, die ein Mikroskop einsetzt, wird als Mikroskopie bezeichnet. Mikroskope sind heute ein wichtiges, unverzichtbares Hilfsmittel in der Biologie, Medizin und den Materialwissenschaften. Die physikalischen Prinzipien, die für den Vergrößerungseffekt ausgenutzt werden, können sehr unterschiedlicher Natur sein. Die älteste bekannte Mikroskopietechnik ist die Lichtmikroskopie, die durch die Brillenschleifer oder Linsenmacher Hans und Zacharias Janssen aus den Niederlanden entwickelt wurde und bei der ein Objekt durch zwei oder mehr Glaslinsen beobachtet wird. Anfang des 17. Jahrhunderts erhielt das mit Objektiv und Okular ausgestattete Mikroskop in Anlehnung an das Wort „Teleskop“ seinen Namen. Die physikalisch maximal mögliche Auflösung eines klassischen Lichtmikroskops ist von der Wellenlänge des verwendeten Lichts abhängig und auf bestenfalls etwa 0,2 Mikrometer beschränkt. Diese Grenze wird als Abbe-Limit bezeichnet, da die zugrunde liegenden Gesetzmäßigkeiten Ende des 19. Jahrhunderts von Ernst Abbe beschrieben wurden. Mittlerweile sind jedoch einige Verfahren bekannt, mit denen diese Grenze überwunden werden kann.
Microscopium Genitiv: Microscopii Abk.: Mic dt.: Mikroskop
Zum Auffinden bedient man sich zweckmäßig des Sternbildes Steinbock. Sein südlichster Stern, ω Cap, ist zwar auch nur 4m11 hell, aber der hellste Stern in dieser Gegend und direkt an der Sternbildgrenze zum Mikroskop, dessen Grenzen ein Areal ohne Ein- und Ausbuchtungen von 210 Quadratgrad einschließen – nämlich in RA von 20h27m362 bis 21h28m10s und in Dec von -45°05´24“ bis hoch auf -27°27´35“. Im Sommer lassen sich vom südlichen Mitteleuropa ab dem 45sten Breitengrad unterhalb des Steinbocks die nördlichsten Teile des Mikroskops erahnen bzw. bei exzellenter Horizontsicht beobachten. Seine Nachbarn sind von Nord im Uhrzeigersinn (auch Sonnenlauf) Capricornus, Sagittarius, Telescopium, Indus, Grus und Piscis Austrinus.
Bild 03: Das Sternbild Microscopium
2.1 Die Sterne
α Mic ist ein schon in mittleren Amateurteleskopen auflösbarer Doppelstern. Seine Gesamthelligkeit ist 4m9 und strahlt aus 380 Lichtjahren Entfernung. Die Hauptkomponente variiert von 4m88 nach 4m94 und ist ein gelber Riesenstern mit dem Spektrum eines G8III-Typen, der im Abstand von 20,6“ von einem 10m0 hellen Stern begleitet wird. Seine Position ist α 20h49m58,1s / δ -33°46´47“.
β Mic ist mit 6m06 für das bloße Auge nicht mehr sichtbar.
γ Mic gehört als gelber Riese der Spektralklasse G8III an, ist 4m67 hell und 224 Lichtjahre von uns entfernt. Er hat im Abstand von 26“ einen nur 13m7 lichtschwachen sichtbaren Begleiter CCDM J21013-3215B auf der Position 94°. Wahrscheinlich ist dieser nicht gravitativ an Gamma Microscopii gebunden. γ Mic gehörte ursprünglich zum östlichen Nachbarn unter der damaligen Bezeichnung 1 Piscis Austrini. Die Pekuliargeschwindigkeit relativ zu seinen Nachbarsternen ist 1.2 km/s, daher wird er zur Ursa-Major-Bewegungsgruppe gezählt. Rückwärtsrechnungen haben ergeben das Gamma Microscopii vor etwa 3,8 Millionen Jahren das Sonnensystem in einer Entfernung von etwa 6 Lichtjahren passiert hat. Er müsste damals eine scheinbare Helligkeit von -3 gehabt haben und wäre damit heller als Sirius heute gewesen.
θ1 Mic besteht aus zwei Sternen mit den Helligkeiten 4m7 und 8m6, die sich in 2,8“ Abstand umkreisen und ihr Licht über eine Entfernung von ca. 200 Lichtjahren zu uns senden. Theta 1 steht im südwestlichen Sternbildareal auf der Position α 21h20m45,6s / δ -40°48´34,5“. Die Hauptkomponente ist ein A7-Spektraltyp dessen Licht zwischen 4m77 und 4m87 in 2,125 Tagen variiert und viele Metalllinien im Spektrum aufweist.
θ2 Mic ist ein engerer Doppelstern. Hier umkreisen sich ein 6m3- und ein 7m0-Stern im Abstand von nur 0,7“. Ihr Licht braucht bis zu uns 470 Jahre.
ε Mic ist 4m71 hell, steht in 165 Lichtjahren Entfernung und gehört der Spektralklasse A0V an.
AU Mic ist ein 12 Millionen Jahre alter roter Zwerg in 33 Lichtjahren Entfernung, der unregelmäßige Helligkeitsausbrüche zeigt. Er besitzt eine ausgedehnte Staub- und Trümmerscheibe, in der neuesten Forschungen zufolge eine Planetenentstehung vermutet wird.
2.2 Deep-Sky-Objekte
NGC 6923 ist eine mit 12m2 leuchtende Spiralgalaxie, mit ersten Anzeichen zur Umwandlung in eine Balkenspiralgalaxie, in einer Entfernung von 130 Millionen Lichtjahren. Sie wurde im Juli 1834 von Wilhelm Herschel entdeckt.
Bild 04: NGC 6923; Foto: The Carnegie-Irvine Galaxy Survey
NGC 6925 steht 3,7° nord-nordwestlich von α Microscopii und scheint mit 11m3 von der Position α 20h34m20,5s / δ -31°58´51,2“. Sie zeigt sich uns von ihrer schrägen Seite mit einer Winkelausdehnung von 3,1´x 1,12´. Sie gehört dem Typ SA(s)bc an, steht in einer Entfernung von etwa 127 Millionen Lichtjahren und wurde im Juli 1834 von Wilhelm Herschel entdeckt.
In dieser Galaxie leuchtete im Juli 2011 eine von Stu Parker aus Neuseeland entdeckte Supernova auf. Diese erhielt die Bezeichnung SN2011ei.
Bild 05: NGC 6925; Foto: The Carnegie-Irvine Galaxy Survey
Im Sternbild Mikroskop stehen mehrere Galaxienhaufen, unter anderen Abell 3695, die aber nur den Großteleskopen zugänglich sind. (Der Abell-Katalog (engl.: Abell catalog of rich clusters of galaxies) ist ein Katalog von über 4000 Galaxienhaufen.)
2.3 Sonstiges
Literaturhinweise:
dtv-Atlas zur Astronomie J. Herrmann
Schlüsseldaten Astronomie Harenberg
Internet Wikipedia div. Autoren
Internet Kuuke´s Sterrenbeelden Kuuke
Sternbilder von A – Z A. Rükl
Quellenangaben der Abbildungen:
Bild 01: Urania‘s Mirror, Plate 24, graviert von Sidney Hall
Bild 02: Museum optischer Instrumente, ww.musoptin.com
Bild 03: IAU und Sky & Telescope
Bild 04: The Carnegie-Irvine Galaxy Survey
Bild 05: The Carnegie-Irvine Galaxy Survey
Die Serie der Sternbildbeschreibungen wird fortgesetzt.
Bildhauer sind handwerkliche Künstler, die plastische Figuren, Reliefs, Halb- und Vollplastiken aus Stein oder Holz heraushauen oder Figuren, die in Kupfer, Bronze oder als Kleinplastiken sogar in Silber oder Gold gegossen werden herstellen, aber auch Terrakotta, Lehm und moderne Materialien benutzen, denn inzwischen hat sich die Bedeutung erweitert und umfasst meist auch den Bereich modellierend-künstlerischer Arbeit. Beim bildhauerisch-plastischen Arbeiten können heute ganz verschiedene Materialien kreativ bearbeitet und zusammengefügt werden.
Bildhauer schufen schon in der Antike Skulpturen, die Abbilder ihrer Vorstellung von den zeitgenössischen Göttern waren. Auch gottgleiche, weltliche Personen, Herrscher und berühmte, hochgeehrte Zeitgenossen, fanden so ihre Verherrlichung und so wurde ihr Aussehen, aus Stein oder Marmor herausgearbeitet, als Kopfplastik, Büste oder Vollstatue in Tempeln oder anderen Ausstellungsräumen der Nachwelt erhalten. Letzteres wird auch heute noch praktiziert was unter anderem die Walhalla bei Regenburg beweist.
Bild 01: „Bildhauer“, Holzschnitt von Jost Ammann 1586 Bild 02: Walhalla Regensburg, Skulpturen in Ruhmeshalle
Das Sternbild Sculptor wurde 1756 vom französischen AstronomenNicolas Louis de Lacaille unter dem Namen l’Atelier de Sculpteur „Werkstatt des Bildhauers“ eingeführt. Später wurde daraus der Bildhauer. Ursprünglich dargestellt wird es als ein Tisch mit einer Büste wechselnden Aussehens. Zusätzlich ist ein Klüpfel und ein Meißel dargestellt, die auf manchen Karten auch als Apparatus Sculptoris „Werkzeug des Bildhauers“, so etwa bei Bode 1801, aufgeführt werden, und ein weiterer Meißel unter der Bezeichnung Caela Sculptoris „die Meißel des Bildhauers“, bei Samuel Leigh 1825. Bei Lacailles Erstbildnis steht zusätzlich ein Steinblock, auf dem das Werkzeug liegt, der von Bode aber entfernt wurde.
Bild 03: Entwurf l’Atelier de Sculpteur Lacaille 1756Bild 04: Apparatus Sculptoris Uranographia J. Bode 1801-3
Der Bildhauer ist ein unscheinbares Sternbild östlich des hellen SternsFomalhaut im Sternbild Südlicher Fisch. Keiner seiner Sterne ist heller als die 4. Größenklasse. Aufgrund seiner Lage ist dieses Sternbild nur im südlichen Mitteleuropa, Schweiz, Österreich und Süddeutschland, also erst ab 50° nördlicher Breite südwärts in den Monaten August bis Dezember vollständig sichtbar. Sein Areal am südlichen Sternenhimmel erstreckt sich in RA von 23h06m43s bis 01h45m50s und in Dec von -39°22´21“ bis -24°48´14“ und belegt dabei 475 Quadratgrad Himmel. Der Bildhauer wird umrahmt von den Sternbildern Walfisch und Wassermann im Norden, dem Ofen im Westen, Phönix im Süden und den Südlichen Fischen im Osten. Zum Auffinden folgt man am besten dem Stern Beta im Walfisch in südöstlicher Richtung zum Alpha-Stern im Phönix. Findet man kaum noch Sterne, so ist man am Ziel angelangt. Aufgrund seines jungen Alters und seines eher unauffälligen Erscheinungsbildes als Sternbild wird der Sculptor nicht häufig erwähnt. Dabei hat der Sculptor in seinen Grenzen durchaus beachtenswerte Objekte zu bieten. So befindet sich hier der galaktische Südpol, durch den die „Drehachse“ unserer Milchstraße geht. Auch einige interessante Galaxien, darunter die Sculptor-Gruppe, eine Galaxiengruppe in etwa 12 Millionen Lichtjahren Entfernung, befinden sich in diesem Sternbild.
Bild 05: Sternbild Sculptor
2.1 Die Sterne
α Scl ist der hellste Stern im Bildhauer, ein 673 Lichtjahre entfernter, bläulich mit 4m3 leuchtender Stern der Spektralklasse B7 IIIp mit einer Oberflächentemperatur von 13.600 K. Er ist zudem ein veränderlicher Stern vom Typ SX Arietis auf der Position α 00h58m36,3s / δ -29°21´26,9“. Im Sternbild markiert er einen Fuß oder das Gerüst des Arbeitstisches.
β Scl markiert den Klüpfel auf dem Werktisch des Bildhauers auf der Position α 23h52m58,3s / δ -37°49´05,7“ mit einer mittleren visuellen Helligkeit von 4m37, die zwischen 4m35 und 4m39 variiert. Der Stern ist 174 Lichtjahre von uns entfernt und gehört als Unterriese der Spektralklasse B9.5III mit einer Oberflächentemperatur von 11.400 K an.
γ Scl, ein orange mit 4m4 leuchtender Riesenstern der Spektralklasse K1III mit einer 4500 K heißen Sternoberfläche, steht auf der Position α 23h18m49,4s / δ -32°31´55,2“. Im Sternbild markiert er die Büste auf dem Werktisch. Die Photonen dieses Sterns kommen aus einer Raumtiefe von 182 Lichtjahren.
δ Scl markiert die Platte des Arbeitstisches und die darauf liegenden Meißel. Am Himmel nimmt er die Position α 23h48m55,5s / δ -28°07´48,9“ ein und leuchtet von dort mit 4m57 als blauweißer A0Vp-Typ mit einer Oberflächentemperatur von 9700 K über eine Distanz von 137,4 Lichtjahren. Delta Sculptoris ist ein Dreifachsternsystem. Die Hauptkomponente, Delta Sculptoris A, ist ein weißer Zwerg mit einer scheinbaren Helligkeit von 4m59. Er hat einen schwachen Begleiter von 11m6, Delta Sculptoris B, in 3,5 Bogensekunden oder mehr als 175 astronomische Einheiten gegenseitigem Abstand auf der Position 239°. Umkreist wird dieses Paar in 74´ Distanz von einem gelben G-Typ Delta Sculptoris C, der eine scheinbare Helligkeit von 9m4 hat.
ε Scl steht in der äußersten nordwestlichen Ecke des Sternbildareals auf der Position α 01h45m38,7s / δ -25°03´09“, ist 5m29 hell und ein physisches Doppelsternsystem, dessen einzelne Komponenten zu den Spektralklassen F2V und G5V gehören. Ihre Distanz zu uns beträgt 92 Lichtjahre. Die Hauptkomponente, Epsilon Sculptoris A, ist ein gelb-weißer Unterriesenstern mit einer scheinbaren Helligkeit von 5m29. Sie wird im Abstand von 4,6“, entsprechend 126 Astronomischen Einheiten, von Epsilon Sculptoris B, einem gelben Zwerg mit einer visuellen Helligkeit von 8m6 umkreist. A und B machen einmal alle 1200 Jahre einen Umlauf um ihr Schwerkraftzentrum. Es gibt zwei optische Begleiter, die aus dem physischen Doppelstern ein optisches Mehrfachsystem machen, nämlich einen Stern 15ter Größe und der Spektralklasse M6v zugehörig, bezeichnet mit Epsilon Sculptoris C in einem Winkelabstand von 15 Bogensekunden und einen weiteren Stern der elften Größe, Epsilon Sculptoris D, bei einem Abstand von 142 Bogensekunden. Der Doppelstern wird aufgrund der Präzession um das Jahr 2920 im Sternbild Fornax sein.
η Scl ist ein roter Riese des Spektraltyps M4III-Typ, 3600K heiß und etwa 450 Lichtjahre von der Erde entfernt. Als semiregulärer Variabler schwankt seine mittlere scheinbare Helligkeit von 4m84 zwischen 4m8 und 4m9 und pulsiert dabei mit mehreren Perioden von 22.7, 23.5, 24.6, 47.3, 128.7 und 158.7 Tagen. Seine Position an Himmel ist α 00h27m55,6s / δ -33°00´25,8“ und im Sternbild steht er fast mittig und somit im Gerüst des Werktisches.
κ Scl ist ein weites, optisches Sternenduo im nördlichen Bereich des Sternbildes Bildhauer.
κ1 Scl ist selbst ein physisches Doppelsternsystem in 224 Lichtjahren Entfernung. Die beiden Komponenten gehören der Spektralklasse F3V und F7 an. Das System kann in einem Teleskop in zwei fast gleich helle 6m1 und 6m2 und gleichfarbige Sterne im Abstand von 1,7“ aufgelöst werden.
κ2 Scl steht mit 581 Lichtjahren Entfernung deutlich tiefer im Raum als sein Partner im optischen Doppelsternsystem Kappa Sculptoris. Er gehört der Spektralklasse K2III an und ist mit 5m41 der hellere Stern.
τ Scl ist 120 Lichtjahre entfernt und besteht aus zwei Sternen der Spektralklassen F1 und F7. Die Sterne können mit einem kleineren Teleskop getrennt werden.
2.2 Deep-Sky-Objekte
NGC 253 ist als „Sculptor-Galaxie“ bekannt. NGC 253 liegt auf der Position RA 00h47m33s / Dec -25°17´17,8“ ca. 7,3° südlich von Deneb Kaitos und ist bei einer Winkelausdehnung von 27,5´ x 6,8´ entsprechend einem Durchmesser von 70.000 Lichtjahren schon im Fernglas gut wahrnehmbar. Bei guten Bedingungen und mit einem großen Teleskop erschließt sie sich erst richtig. Im Night Sky Observers Guide wird die Galaxie für Teleskope mit 12-14″ Öffnung als erstaunliches, extrem längliches Objekt mit markanten Staubstrukturen beschrieben. Sie wird zu einem atemberaubenden Anblick und stiehlt selbst M31 locker die Schau. Sie hat eine Flächenhelligkeit von 12m9, ist 7m3 hell und somit die zweithellste Spiralgalaxie an unserem Himmel, nur die Andromedagalaxie M31 ist noch heller. Im Gegensatz zur Andromeda-Galaxie ist NGC 253 sehr stark strukturiert mit Staubbändern und Knoten und erscheint richtiggehend als plastischer Sternenstrudel. Mit der Klassifizierung SAB(s)c ist sie eine weit geöffnete Spirale mit leichtem Balkenansatz. Ihr Sternenlicht braucht bis zu uns 11,4 Millionen Jahre. Entdeckt wurde dieses Leuchten am 23. September 1783 von Caroline Herschel.
NGC 253 bildet als zentrale Galaxie zusammen mit den Galaxien NGC 254 (ca. 4,2° nördlich im Walfisch), NGC 247 (ebenfalls im Walfisch), NGC 300 (ca. 12° südlich), NGC 7793 (ca. 8° östlich von Beta) und NGC 55 (ca. 15° südsüdöstlich von NGC 253) die Sculptor-Galaxiengruppe, die eine direkte Nachbargruppe unserer Lokalen Gruppe ist.
Bild 06: NGC 253 Sculptor- oder Silberdollar-Galaxie
NGC 288, ein 8m1 Kugelsternhaufen, liegt ca. 1,5° südöstlich von NGC 253, 37′ nord-nordöstlich des südlichen Galaktischen Pols, 15′ südsüdöstlich eines Sterns der 9. Größe und ist von einer halbkreisförmigen Sternenkette umgeben, die sich im Südwesten öffnet. Seine Position ist RA 00h52m45s / Dec -26°35`. Im kleinen Fernrohr erscheint er nur als ein matter Nebelschimmer. In größeren Fernrohren kann man ihn bei Vergrößerungen ab 200 x in Tausende schwacher Sterne aufgelöst sehen. NGC 288 hat eine Winkelausdehnung von 13´ entsprechend einem halben Vollmonddurchmesser und bei einer Entfernung von ca. 30.000 Lichtjahren einem realen Durchmesser von 120 Lichtjahren. Seine visuelle Erscheinung wurde 1888 von John Dreyer beschrieben: „Der Kugelsternhaufen ist nicht sehr konzentriert und hat einen gut aufgelösten, 3′ großen, dichten Kern, der von einem viel diffuseren und unregelmäßigeren Ring mit 9′ Durchmesser umgeben ist. Sterne in der Peripherie erstrecken sich weiter nach Süden und besonders nach Südwesten“. Entdeckt wurde er schon am 27. Oktober 1785 von Friedrich Wilhelm Herschel.
Eine Besonderheit ist, dass nur 37´ nordnordöstlich dieses Kugelsternhaufens der Südpol unserer Galaxis (GSP) liegt.
Bild 07: NGC 288 Kugelsternhaufen nahe dem GSP
NGC 55 ist eine weitere helle Galaxie, die allerdings am Rand der Sculptor-Gruppe auf der Position RA 00h14m53,6s / Dec -39°11´47,9“ liegt. Sie befindet sich schon im Grenzgebiet zur Lokalen Gruppe. In älterer Literatur findet man sie daher oft als Mitglied der Lokalen Gruppe angegeben. Bei NGC 55 blicken wir fast auf die Kante, so daß eine Spiralstruktur schwer zu erkennen ist. Daher wird die Klassifikation als Spiralgalaxie nicht von allen Astronomen geteilt. Einige sehen NGC 55 mehr als irreguläre Galaxie vom Typ SB(s)m.
NGC 55 hat eine Winkelausdehnung von 32,4′ × 5,6′ entsprechend einem Durchmesser von 55.000 Lichtjahren, eine scheinbare Helligkeit von 7m8 und eine Flächenhelligkeit von 13,3´pro Quadratgrad. Damit ist diese Spiralgalaxie, die zur Sculptor-Gruppe gehört, die zwölfthellste Galaxie am Himmel. Ihr Licht braucht bis zur Erde 5,9 Millionen Jahre, ist allerdings in Mitteleuropa unbeobachtbar. Obwohl das Sternsystem zur Sculptor-Gruppe gezählt wird, hat es eine Radialgeschwindigkeit, die auf eine Zugehörigkeit zur Lokalen Gruppe schließen lässt. NGC 55 wurde am 4. August 1826 von James Dunlop entdeckt.
Bild 08: NGC 55 Randmitglied der Sculptorgruppe
NGC 300 ist eine weitere sehr schöne Spiralgalaxie in der Sculptor-Gruppe auf der Position RA 00h54m53s / Dec -37°41´04“. Auf NGC 300 sehen wir direkt von oben, so daß sehr schön ihre Spiralstruktur mit den weit gewundenen Spiralarmen in der Klassifizierung SA8s)d zur Geltung kommt. Sie hat eine Winkelausdehnung von 21,9′ × 15,5′, eine Flächenhelligkeit von 13m9 und eine visuelle Helligkeit von 8m1. Sie ist rund 7 Millionen Lichtjahre vom Sonnensystem entfernt und mit einem Durchmesser von etwa 70.000 Lichtjahren deutlich kleiner als unsere Milchstraße. Das Objekt wurde am 5. August 1826 von dem schottischen AstronomenJames Dunlop entdeckt. NGC 300 und NGC 55 sind nur etwa eine Million Lichtjahre voneinander entfernt, daher nimmt man an, dass es sich um ein gravitativ gebundenes Paar handelt.
Bild 09: NGC 300 vor Hintergrundgalaxien
NGC 7793 ist eine Spiralgalaxie vom Hubble-Typ SA(s)dHII. NGC 7793 hat bei einer Winkelausdehnung von 9,3‘ × 6,3′ eine Flächenhelligkeit von 13m3 und eine visuelle von 9m0. Die Galaxie befindet sich auf der Position RA23h57m49,8s / Dec -32°35´27,7“ etwa 13 Millionen Lichtjahre vom Sonnensystem entfernt und hat einen Durchmesser von etwa 55.000 Lichtjahren. NGC 7793 wurde am 14. Juli 1826 vom schottischen AstronomenJames Dunlop entdeckt. Eine Gruppe europäischer Forscher hat mit Hilfe der Teleskope der Europäischen Südsternwarte einen Mikroquasar in einem der Spiralarme von NGC 7793 entdeckt, der vor allem durch besonders heftige Materieausstöße auffällt. Das Schwarze Loch, welche das Zentrum des Mikroquasars bildet, nimmt dabei nicht nur große Mengen Materie auf, sondern beschleunigt und stößt diese in Form von Jets aus. Eine Gasblase mit etwa 1.000 Lichtjahren Durchmesser dehnt sich mit fast 0,1 Prozent Lichtgeschwindigkeit aus.
Bild 10: NGC 7793, Bild ESO VLT Paranal
Weitere, aber lichtschwächere Galaxien der Sculptor-Gruppe befinden sich sowohl in diesem als auch in den Nachbarsternbildern.
2.3 Sonstiges
Bild 11: Sternbild Sculptor mit Nachbarn
Literaturhinweise:
Internet – Astromedia div. Autoren
Internet – Wikipedia div. Autoren
Internet – Astronomie.de div. Autoren
dtv-Atlas Astronomie J. Herrmann
Buch der Sterne Guinness
Die großen Sternbilder I. Ridpath
Sternbilder von A – Z A. Rükl
Was Sternbilder erzählen G. Cornelius
Quellenangaben der Abbildungen:
Bild 01: Wikimedia Commons the free media repository / Dt. Fotothek Ständebuch Auszug Bildhauer Holzschnitt Jost Ammann 1586
Bild 02: eigenes Foto
Bild 03: wgsebald.de
Bild 04: Auszug aus Karte XVII der Uranographia 1801 von J. E. Bode
Bild 05: Wikimedia Commons the free repository Grenz- und Skelettlinien umcoloriert
Wie schon aus der Überschrift ersichtlich ist, beschreibe ich hier zwei benachbarte Sternbilder, welche sich in einer sternenlichtschwachen, also scheinbar sternlosen Gegend des Südsternhimmels befinden. Beide haben aber in ihrer näheren Umgebung auffällige Himmelsobjekte, die uns das Auffinden der nachfolgend beschriebenen Sternbilder erleichtern bzw. ermöglichen.
Zudem
möchte ich eine scheinbare Diskrepanz bei der Angabe der Sternbildgrenzen
anhand dieser beiden Sternbilder aufklären. Seit der offiziellen Festlegung der
Sternbildgrenzen und der verbindlichen Einführung der heute gültigen 88
Sternbilder durch die Internationale Astronomische Union (IAU) im Jahr 1930
lesen wir:
Das Sternbild
XYZ erstreckt sich in RA von xa / bis xz und in Dec von ya / bis yz.
Somit
scheinen alle Sternbilder viereckig, quadratisch oder rechteckig zu sein, wobei
einige Gebiete scheinbar zu beiden benachbarten Sternbilder gehören, weil z.B.
die östliche Sternbildgrenze entsprechend der Koordinaten durch westliche Teile
des Nachbarn zieht und dessen westliche Sternbildgrenze anscheinend teilweise im
östlichen Teil seines Nachbarn liegt.
Auflösung: Beide Nachbarn weisen an ihrer gemeinsamen Sternbildgrenze rechtwinklige Ein- bzw. Ausbuchtungen auf und die Sternbildkoordinaten geben jeweils immer nur die äußersten Längen- und Breitengrade an. Somit haben die Sternbilder auch in der Regel kleinere Flächeninhalte, als sie bei der Rechnung mit den Sternbildkoordinaten als Resultat herauskommen. Auch hier gibt es wieder Ausnahmen, denn die Sternbilder Canis Major, Chamäleon, Corona Australis, Crux, Microscopium, Pisces Australis, Scutum, Sextans, Telescopium und Volans sind echte, geradlinige, rechtwinklige Vierecke.
Bild 01: Die benachbarten Sternbilder Tafelberg und Kleine Wasserschlange
2
Der Name Hydrus
Als Urheber dieses Sternbildes kommen wieder einmal die Niederländer Keyser und de Houtman ins Spiel. (Näheres hierzu siehe „Das Sternbild Grus – Kranich”). Ihre Himmelskarten von 1895 mit den darin vorgeschlagenen 12 neuen Sternbildern wurden von Johann Beyer 1603 in dessen Uranometria übernommen und somit veröffentlicht. Als neuzeitliches Sternbild hat Hydrus, die kleine, südliche oder auch „männliche“ Wasserschlange, keine antike Mythologie. Was die Niederländer dazu veranlasste, dieses Sternbild „De Waterslang“ zu benennen, ist nicht belegt. Allerdings waren Seeschlangen vor den Küsten der tropischen Meere häufig zu beobachten. Hydrus gilt als das südliche Gegenstück der Hydra, der nördlichen oder „weiblichen“ Wasserschlange.
3 Das Sternbild Hydrus
Hydrus Genitiv: Hydri Abk.: Hyi dt.: Kleine (südl. oder männl.) Wasserschlange
Die Sternbildkoordinaten des Hydrus lauten RA 0h06m08s bis 4h35m11s / Dec -82°03´52“ bis -57°50´54“. Diese schließen, abzüglich der Einbuchtungen durch Tukan, Tafelberg und Pendeluhr, ein Areal von 243 Quadratgrad ein. Die umgebenden Nachbarsternbilder sind von Nord im Sonnenlauf Eridanus, Phönix, Tukan, Oktant, Tafelberg, Goldfisch, Netz und Pendeluhr. In diesem umschlossenen Gebiet sind nur 2 Sterne heller als dritte Größe. Als Auffindehilfe bilde man ein rechtwinkliges Dreieck aus dem 0m5 hellen, blau leuchtenden Stern Achernar = Alpha Eridani und den beiden Magellanschen Wolken. Darin befindet sich der Großteil des Sternbildes Hydrus.
Um es
vollständig sehen zu können, muss man bis 8° vor den Äquator nach Süden reisen.
Von Mitteleuropa ist es nie zu sehen, auch nicht teilweise.
3.1 Die Sterne
α Hyisteht etwa 5° südwestlich des hellen Sterns Achernar auf der Position α 01h58m46,2s / δ -61°34´11,5“ und ist mit 2m9 nur der zweithellste Stern im Hydrus. Er gehört zur Spektralklasse F0V, leuchtet gelb, ist 7500 K heiß und sein Licht braucht 72 Jahre bis zu uns.
Im
Chinesischen war er vor der Einführung der europäischen Konstellationen auf der
südlichen Hemisphäre ein Teil des Sternbildes 蛇 首
(Shé Shǒu), was Schlangenkopf bedeutet. Dieser
Schlangenkopf bestand aus α Hydri und β Reticuli. Uns fremde Sternbilder aus
anderen Kulturkreisen werden als Asterismen bezeichnet (Asterismus:
Sternkonfiguration, die keine Entsprechung in einem der 88 Sternbilder der IAU
hat). α Hydri selbst hatte den Eigennamen
蛇 首 一
(Shé Shǒu yī,: der erste Stern des Schlangenkopfes).
β Hyiist mit 2m8 der hellste Hydrus-Stern und steht südlich der Kleinen Magellanschen Wolke auf der Position α 00h25m45s / δ -77°15´15,3“. Von dort leuchtet er als Unterriese und G2IV-Typ mit einer Oberflächentemperatur von 5800 K über eine Distanz von 24,3 Lichtjahren. Er besitzt eine ähnliche Masse wie unsere Sonne, ist aber mit einem Alter von etwa 7 Milliarden Jahren weiter entwickelt und hat sich auf einen Durchmesser von über 2 Millionen Kilometer aufgebläht.
Im Jahr 2002 haben
Endl et al. die mögliche Anwesenheit eines unsichtbaren Begleiters, der Beta
Hydri umkreist, durch Veränderungen in der Radialgeschwindigkeit mit einer
Periode von mehr als 20 Jahren, angedeutet. Ein nichtstellares Objekt mit einer
minimalen Masse von 4 Jupitermassen und einem Orbit von etwa 8 AU könnte die
Beobachtung erklären. Wenn das bestätigt würde, wäre es ein echtes
Jupiter-Analogon, wenn auch viermal so massiv. Diese Vermutung wurde durch die
in 2012 veröffentlichten CES- und
HARPS-Messungen allerdings nicht bestätigt. Stattdessen könnten die
langfristigen Radialgeschwindigkeitsvariationen auch durch den magnetischen
Zyklus des Sterns verursacht werden.
γ Hyi, der dritthellste Stern im Sternbild Kleine Wasserschlange, ist ein von 3m26 nach 3m33 pulsierend veränderlicher roter Riese der Spektralklasse M1III mit einer Oberflächentemperatur von 3500 K. Mit diesen Charakteristika lässt er sich am ehesten dem asymptotischen Riesenzweig des HR-Diagramms zuordnen. Er hat etwa die gleiche Masse wie die Sonne, hat sich aber auf das 62-fache des Sonnenradius ausgedehnt und strahlt das 513-fache der Sonnenleuchtkraft aus seiner vergrößerten Photosphäre. Gamma Hydri liegt ca. 12,3° östlich von Beta auf der Position α 03h47m14,3s / δ -74°14´22,2“ und ist ca. 215 Lichtjahre von uns entfernt.
VW Hyi liegt 3° nordöstlich von Gamma und ist eine Zwergnova vom Typ SU Ursae Majoris. (Im Gegensatz zu einer klassischen Nova, bei der das explosionsartige Einsetzen des Wasserstoffbrennens an der Oberfläche des Weißen Zwerges, zu einem Helligkeitsanstieg führt, entstehen die Ausbrüche bei einer Zwergnova durch Helligkeitsanstiege in der Akkretionsscheibe um den Weißen Zwerg.) VW Hydri ist ein dichtes binäres System, das aus einem weißen Zwerg und einem anderen Stern besteht, wobei der erstere Materie vom anderen Stern in eine helle Akkretionsscheibe abzieht. Diese Systeme sind durch häufige Eruptionen und seltenere Helligkeitsüberschläge gekennzeichnet. Erstere sind glatt, während letztere kurze “Überhöhungen” besonderer Aktivität zeigen. VW Hydri ist eine der hellsten Zwergnovae am Himmel. Sie hat eine normale Helligkeit von 14m4 und kann während der Spitzenaktivität bis auf 8m4 aufhellen. Ihre Oberflächentemperatur liegt bei 18.000 +/- 2000 K.
π1,2 Hyi an der Nordsüdgrenzecke zum Sternbild Pendeluhr ist ein optischer Doppelstern, bestehend aus Pi1 Hydri und Pi2 Hydri, welche schon in Ferngläsern trennbar sind. Etwa 476 Lichtjahre entfernt ist Pi1 ein roter Riese vom Spektraltyp M1III, der zwischen den Magnituden 5.52 und 5.58 variiert. Pi2 ist ein orangefarbener Riese vom Spektraltyp K2III, leuchtet mit einer Magnitude von 5.7 und ist rund 488 Lichtjahre von der Erde entfernt.
GJ 3021 ist ein sonnenähnlicher Doppelstern, dessen Hauptkomponente GJ 3021A unserer eigenen Sonne sehr ähnlich ist, nur 57 Lichtjahre entfernt liegt und ein spektraler Typ G8V mit einer Magnitude von 6.7 ist. Er hat einen jovianischen Planetenbegleiter (GJ 3021Ab). Der Planet umkreist in etwa 0,5 AE seine Sonne in einen Zeitraum von etwa 133 Tagen und hat eine Mindestmasse von 3,37-mal Jupiter. Das System ist komplex, da der schwache Stern GJ 3021B, ein roter Zwerg vom Spektraltyp M4V, die Hauptkomponente in einer Entfernung von nur 68 AE umkreist.
η Hyi ist ein weiteres optisches Doppelsternsystem, bestehend aus Eta1 und Eta2.
η1Hyi ist ein blau-weißer Hauptreihenstern des Spektraltyps B9V mit 12000 K Oberflächentemperatur, der im Verdacht stand, variabel zu sein. Eta1Hyi befindet sich etwas mehr als 700 Lichtjahre vom Sonnensystem entfernt. Seine Position ist α 01h52m34,7s / δ -67°56´40,2“.
η2Hyi befindet sich auf α 01h54m13s / δ -67°38´50,3“, hat eine Magnitude von 4.7 und ist ein rund 220 Lichtjahre entfernter gelber Riesenstern vom Spektraltyp G8.5III, der sich aus der Hauptreihe fort entwickelt hat und sich auf seinem Weg zum Roten Riesen ausdehnt und abkühlt. Berechnungen seiner Masse deuten darauf hin, dass er für den größten Teil seines Bestehens höchstwahrscheinlich ein weißer Hauptreihenstern vom Typ A war, mit etwa der doppelten Masse unserer Sonne. Ein Planet, Eta2 Hydri b, der die 6,5-fache Jupitermasse aufweist, wurde 2005 entdeckt. Er umkreist Eta2 alle 711 Tage in einer Entfernung von 1,93 Astronomischen Einheiten (AU).
HD 10180 Es wurde bis heute herausgefunden, dass vier Sternsysteme in Hydrus Exoplaneten haben, einschließlich dem sonnenähnlichen Stern HD 10180. Dieser soll mindestens 7 Planeten besitzen und möglicherweise noch zwei weitere, also insgesamt neun Planeten. Damit würde er mehr Planeten aufweisen als jedes andere bis zum heutigen Tag bekannte System einschließlich des Sonnensystems. HD 10180 liegt auf der Position α 01h37m53,6s / δ -60°30´41,3“, ist 127 Lichtjahre von der Erde entfernt und hat eine scheinbare Helligkeit von 7m33. Er gehört der Spektralklasse G1V an, ist 5400 K heiß und leuchtet gelblich.
Das Planetensystem von HD 10180 stellt sich
nach derzeitiger Kenntnis wie folgt dar:
HD 10180 b ist ein unbestätigtes Objekt. Der vermutete Planet liegt 0,02 AE vom Stern entfernt, braucht etwas mehr als 1 Tag für einen Umlauf und hat eine Mindestmasse, die etwa der Masse der Erde entspricht.
HD 10180 c
liegt 0,06 AE vom Stern entfernt (ca. 6-mal näher als der Merkur an der Sonne),
braucht 5,4 Tage für einen Umlauf und hat eine Mindestmasse von ca. 13 Erd-
oder 0,04 Jupitermassen.
HD 10180 d
liegt etwa 0,1 AE von seinem Stern entfernt, benötigt etwa 11,5 Tage für eine
Umrundung und hat eine ähnliche Mindestmasse wie HD 10180 c.
HD 10180 e
befindet sich ca. 0,3 AE entfernt von HD 10180 (etwas näher als der Merkur bei
der Sonne), braucht etwa 60 Tage für eine Umrundung und ist mit einer
Mindestmasse von ca. 0,08 Jupitermassen wahrscheinlich ein Gasriese.
HD 10180 f
liegt 0,5 AE vom Zentralgestirn entfernt (etwas näher als die Venus bei der
Sonne), benötigt 129 Tage für einen Umlauf und hat eine ähnliche Mindestmasse
wie HD 10180 e.
HD 10180 g
befindet sich 1,4 AE von seinem Stern entfernt (ähnlich wie der Mars bei der
Sonne), braucht ca. 1,7 Jahre für einen Umlauf und hat etwa 0,07 Jupitermassen.
HD 10180 h
bewegt sich schließlich etwa 3,4 AE von HD 10180 entfernt, braucht etwa 6,3
Jahre für einen Umlauf und ist mit ca. 0,2 Jupitermassen der Exoplanet mit der
größten Mindestmasse unter den bekannten Planeten dieses Systems.
3.2 Deep-Sky-Objekte
IC1717 ist ein verloren gegangenes Objekt aus dem Indexkatalog der Nebel (IC). Der IC war ein Anhang zum Neuen Gesamtkatalog (NGC). Beide wurden von John Louis Emil Dreyer (J. L. E. Dreyer) zusammengestellt. Die NGC enthielt Beobachtungen von William Herschel und seinem Sohn John. Der IC wurde aus Beobachtungen von Galaxien, Clustern und Nebeln zwischen 1888 und 1907 zusammengestellt. Objekt Nummer 1717 aus dem IC ist ein interessanter Fall. Dreyer selbst beobachtete IC 1717 und katalogisierte es als sehr schwach, sehr klein und sehr ausgedehnt mit einem stellaren Kern. Dreyer, der als aufmerksamer Beobachter bekannt ist, muss an diesem Ort etwas gesehen haben, aber jetzt ist dort nichts mehr zu erkennen. Vermutlich hat er damals einen Kometen gesehen, dessen Bahn aber nicht berechnet. Es gibt allerdings ganz in der Nähe einen Stern, Eta2 Hydri.
PGC 6240 ist eine etwa 350 Millionen Lichtjahre entfernte Riesenspiralgalaxie mit dem schönen Namen „Weiße Rose Galaxie“. Sie befindet sich im südlichen Teil des Sternbildes Hydrus auf der Position RA 01h41m31,38s / Dec -65°36´57,5“ und hat nebelige Schalen von Sternen, die sich um ein leuchtendes Zentrum drehen, in dessen Nähe wenige Schalen liegen, während andere in einiger Entfernung liegen. Diejenigen, die vom Zentrum entfernt sind, scheinen von der weißen Rose getrennt zu sein. Das Alter von Kugelsternhaufen in dieser Galaxie ist variabel. Sie umfassen eine Population von relativ jungen Kugelsternhaufen, die etwa 400 Millionen Jahre alt sind, eine weitere Gruppe von älteren, die rund 1 Milliarde Jahre alt sind, und wieder andere, die sogar noch älter sind. Das Alter der jüngeren stimmt mit dem Alter der Muscheln oder Schalen aus Sternen um die eigentliche Galaxie überein. Dies deutet darauf hin, dass die jüngeren Cluster und Schalen in den Sternentstehungsstadien nach der Verschmelzung der Galaxie mit einer anderen Galaxie in der jüngsten Vergangenheit entstanden sind. Die wundervollen, blütenblattartigen Schalen der Galaxie PGC 6240 werden hier vom NASA / ESA-Hubble-Weltraumteleskop in einem komplizierten Kompositfoto erfasst, das PGC 6240 vor einem Himmel voller entfernter Hintergrundgalaxien zeigt.
Bild 02: PGC 6240 – Die “Weiße Rose”-Galaxie
NGC1511 ist eine Spiralgalaxie in Kantensicht, eine sogenannte Edge-on-Galaxy. Ihre Position ist RA 03h59m36,8s / Dec -67°38´05“ und ihre Entdeckung geschah am 2. November 1834 durch John Herschel.
Bild 03: NGC 1511 – eine Edge-On-Galaxy
4 Der Name Mensa
Hier taucht wieder der Name Nikolas Louis de La Caille als Namensgeber auf, der am Fuße des Tafelberges bei Kapstadt in Südafrika ein eigenes Observatorium betrieb.1750 reiste er für vier Jahre an das Kap der Guten Hoffnung, um dort die Parallaxen des Mondes, der Venus und des Mars genauer zu berechnen. Seine Positionsbestimmungen trugen dazu bei, die Distanzen dieser Himmelskörper präziser als es bis dahin möglich war, zu bestimmen. Außerdem beobachtete er die Sternbilder des Südhimmels, benannte insgesamt 14 neue und katalogisierte hierbei fast 10.000 Sterne. Seine in Südafrika durchgeführten Positionsmessungen an Fixsternen belegten auch die Richtigkeit der von Isaac Newton vorgetragenen Vermutung, dass die Erde keine Kugel sei, sondern – durch die Fliehkraft bedingt – am Äquator einen größeren Durchmesser haben müsse als von Pol zu Pol. Lacaille kam jedoch zu dem Ergebnis, die Wölbung sei auf der Südhalbkugel der Erde geringer (flacher) als auf der Nordhalbkugel. Dies wird als Meridian-Problem bezeichnet.
Ähnlich wie der
echte Tafelberg, dessen Gipfel Devil´s Peak fast ständig in Wolken eingehüllt
ist, wird auch der himmlische Tafelberg teilweise von einer Wolke, nämlich der
Großen Magellanschen Wolke, verdeckt.
Bild 04: Tafelberg bei Kapstadt – links Devil´s Peak
5 Das Sternbild Mensa
Das Sternbild
Mensa ist das lichtschwächste Sternbild am Himmel und wäre ohne die hier
hineinragende Große Magellansche Wolke fast ohne jeden beobachterischen Reiz.
Es nimmt eine Fläche von nur 153 Quadratgrad ein, die sich in RA von 3h12m56s
bis 7h36m52s und in Dec von -85°15´41“ bis
hoch auf -69°44´48“ erstrecken und von Norden im Sonnenlauf umrahmt werden von
Dorado, Hydrus, Oktans, Chamäleon und Pisces Australis. Vollständig sichtbar
ist es erst in Äquatornähe, nämlich ab dem 5ten Breitengrad südwärts und bei
uns ganzjährig nicht einmal teilweise.
Mensa Genitiv: Mensae Abk.: Men dt.: Tafelberg
5.1 Die Sterne
α Men ist mit nur 5m1 der hellste Stern. Er steht auf der Position α 06h10m14,47s / δ -74°45´10,9“. Alpha Mensae ist etwa 33,1 Lichtjahre vom Sonnensystem entfernt und hat eine relativ hohe Eigenbewegung am Himmel, durch die er in den letzten 250.000 Jahren eine Annäherung an die Sonne von 10 Lichtjahren (3.2 pc) gemacht hat. Ein bei diesem Stern entdeckter Infrarotüberschuss zeigt höchstwahrscheinlich das Vorhandensein einer zirkumstellaren Staubscheibe mit einem Radius von über 147 AE an. Die Temperatur dieses Staubs liegt unter 22 K. Bis jetzt sind keine planetarischen Gefährten entdeckt worden. Alpha Mensae hat einen roten Zwergbegleitstern in einem Winkelabstand von 3,05 Bogensekunden entsprechend einem Abstand von etwa 30 AU. Der Stern selbst ist ein 5m09 heller, gelblich leuchtender G7V-Spektraltyp mit einer Oberflächentemperatur von 5580 K bei einem Alter von 5,4 Milliarden Jahren.
β Men ist der nördlichste noch mit freiem Auge sichtbare Stern am Rande der Großen Magellanschen Wolke auf der Position α 05h02m42,99s / δ -71°18´51,5“. Als gelber Riese der Spektralklasse G8III ist er 5000 K heiß und sendet sein 5m31 helles Licht über eine Entfernung von 790 Lichtjahren zu uns. Sein Alter wird mit 270 Millionen Jahren angegeben; er kommt uns mit einer Radialgeschwindigkeit von 114.000 km/s näher.
γ Men hat als gelber Riese das Spektrum eines 3600 K heißen K4III-Stern, der sein 5m18 helles Licht aus 101 Lichtjahren Entfernung zu uns sendet. Er ist ein Doppelstern.
η Men gehört neben α, β und γ zu den 4 figurbildenden Sternen. η Men wechselt gerade von einem orangen zum roten Riesen. Sein 5m47 helles Licht kommt von der 3900 K heißen Sternoberfläche eines K6III-Spektraltyps, der auf der Position α 04h55m11,14s/ δ -74°56´13,2“ steht. Seine Entfernung wurde mit 712 Lichtjahren angegeben, die jedoch durch Hipparcos-Messungen im Jahr 1997 auf 668,37 Lichtjahren korrigiert wurde.
δ Men steht im westlichen Teil des Sternbildes auf der Position α 4h17m59,18s / δ -80°12´51,1“ in einer Distanz zu uns von 408 Lichtjahren. Sein 5m67 helles Licht kommt von der rund 4000 K heißen Oberfläche eines Riesen im Übergang von K2III nach K3III.
ε Men befindet sich westlich neben Delta Mensae nahe der Grenze zum Chamäleon. Seine Position ist α 7h25m19s / δ -79°05´39,1“ und seine Helligkeit liegt bei 5m54. Diese kommt von der 4300 K heißen Oberfläche eines K2III-Spektraltypen, der gerade von orange nach rot abkühlt und in einer Raumtiefe von 466 Lichtjahren steht.
π Men liegt im zentralen Bereich des Sternbildes auf der Position α 5h37m9,9s / δ -80°28´8,8“. Pi Mensae ist etwa 59,4 Lichtjahre von der Sonne entfernt. Laut dem Eintrag für HR 2022 im Yale Bright Star Catalogue (im Yale Bright Star Catalogue YBS sind alle Sterne mit einer scheinbaren Helligkeit von 6.5 oder heller aufgelistet – also in etwa alle Sterne, die von der Erde aus bei besten Bedingungen mit bloßem Auge zu erkennen sind. Die Sterne des Katalogs tragen die Bezeichnung HR vor ihrer Nummer; dieses Kürzel soll an den 1908 veröffentlichten Vorgänger-Katalog erinnern, den Harvard Revised Photometry Catalogue) ist Pi Mensae ein Mitglied der 61 Cygni Stellar Moving Group. Am 15. Oktober 2000 kündigten Astronomen um Butler et al. die Entdeckung eines Jupiter-ähnlichen Planeten um diesen sonnenähnlichen Stern an, der die systematische Bezeichnung Pi Mensae b erhielt. Pi Mensae wurde zu einem der Top-100-Zielsterne für den geplanten terrestrischen Planetenfinder (TPF) der NASA.
5.2 Deep-Sky-Objekte
DieGroße Magellansche Wolke (ESO 56-115) ist eine von zwei irregulären Zwerggalaxien in nächster Nachbarschaft zu unserer Galaxis und damit Teil der Lokalen Gruppe. Die Große Magellansche Wolke ist nach neueren Forschungen am Paranal-Observatorium vom März 2013 162.980 Lichtjahre +/- 2% entfernt und enthält ungefähr 15 Milliarden Sterne. Als Balkenspiralgalaxie von Typ SBm/irr hat sie eine Längsausdehnung von 6 Winkelgrad. Bei einer visuellen Helligkeit von 0m9 finden wir sie auf den Koordinaten RA 5h24m / Dec -69°48´. Im Fernrohr zeigt sich ihr Charakter als Galaxie, die aus Sternen, Nebeln, Sternhaufen und anderen Objekten zusammengesetzt ist. Ferner sind viele Sternhaufen in der Großen Magellanschen Wolke schon im kleinen Teleskop sichtbar, von denen einige zur Klasse der blauen Kugelsternhaufen gehören, einer Objektklasse, die es in der Milchstraße nicht gibt. Den Bewohnern der Südhalbkugel waren die beiden Galaxien wohl schon seit prähistorischer Zeit durch Beobachtungen mit dem bloßen Auge bekannt, erstmalige schriftliche Erwähnung fanden sie jedoch erst durch den persischen Astronomen Al Sufi in seinem Buch der Fixsterne im Jahr 964. Der erste Europäer, der die beiden Wolken beschrieb, war Ferdinand Magellan bei seiner Weltumsegelung 1519. Nach der Milchstraße, dem Andromedanebel und dem Dreiecksnebel ist die GMW die viertgrößte Galaxie der Lokalen Gruppe. Weil ihr größerer Anteil im Sternbild Dorado liegt, ist sie in der entsprechenden Sternbildbeschreibung in der POLARIS 102 etwas ausführlicher beschrieben. Im südlichen Teil der GMW gibt es leider nur wenige wirklich erwähnenswerte Objekte.
NGC 1711 ist die Bezeichnung eines visuell 10m0 hellen offenen Sternhaufens im südlichen Teil der Großen Magellanschen Wolke, der ins Sternbild Tafelberg hineinragt. Der Sternhaufen wurde 1826 von James Dunlop mit einem 23-cm-Teleskop entdeckt. Wir finden ihn auf der Position RA 04h50m36s / Dec -89°58´60“. Die HAST-Aufnahme zeigt eine hohe Konzentration, die schon fast einen lockeren Kugelsternhaufen vermuten lässt.
Bild 05: NGC 1711 – offener Sternhaufen im Mensa-Teil der GMW
NGC 1943, ein offener Sternhaufen, steht auf der Sternbildgrenze zum Dorado in RA auf 5h22m28,7s und in Dec auf -69°20´07“. Er ist mit 11m9 nur noch für größere Amateurteleskope zugänglich, zeigt darin aber eine zunehmende Sternkonzentration zur Haufenmitte. Entdeckt wurde er 1826 mit einem 23 cm-Teleskop von James Dunlop, einem dänischen Astronomen.
Bild 06: NGC 1943 in der GMW an der Sternbildgrenze Dorado/Mensa – Foto HAST
NGC 2010 ist ein mit 11m7 leuchtender offener Sternhaufen in dem südlichen Teil der Großen Magellanschen Wolke, der in das Sternbild Mensa hineinreicht. Er befindet sich dort auf der Position RA 05h30m35s / Dec -70°49,2´ und hat eine Winkelausdehnung von 2 Bogenminuten. Er wurde am 12. November 1826 von John Herschel entdeckt.
Bild 07: NGC 2010 offener Sternhaufen im Mensa-Teil der GMW
Bild 08: NGC 1987 lockerer Kugelsternhaufen im Mensa-Teil der GMW
NGC 2018 ist ein Supernovarest in den südlichen Regionen der Großen Magellanschen Wolke. Seine Entfernung ist mit 163.000 Lichtjahren angegeben. In einer Verdichtung / Globule, hervorgerufen durch Kollision der auseinander driftenden Gase mit dem interstellaren Medium, entstehen bereits wieder neue Sterne.
Bild 09: NGC 2018 SN-Rest in der GMW – Foto 3,9 m-AAT am Australian Astronomical Observatory
NGC 2199 ist eine Spiralgalaxie in Schrägstellung auf der Position RA 06h04m44,9s / Dec -73°24´59“ und damit nahe dem westlichen Rand der Großen Magellanschen Wolke und der Grenze zum Dorado. Ihr Licht erreicht uns erst nach 207,7 Millionen Jahren.
Bild 10: NGC 2199 – Spiralgalaxie in Mensa
6 Sonstiges
Bild 11: Uranometria 1603: “Southern Birds, Indus, and Hydrus”
Literaturhinweise:
Peripedia diverse Autoren
Sternbilder von A – Z A. Rükl
Buch der Sterne Guiness
Wikipedia div. Autoren
Astronomie.de div. Autoren
Schlüsseldaten der Astronomie Harenberg
Lexikon der Astronomie Bd. 1 und 2 div. Autoren
POLARIS 102 E.-G. Bröckels
Quellenangaben der Abbildungen:
Bild 01: Auszug aus Sternbilder von A – Z A. Rükl
Bild 02: Wikimedia Commons, the free media repository, NASA/ESA HST
Der Kranich ist ein „neuzeitliches“ Sternbild des
südlichen Sternenhimmels. Seine Sterne gehörten seit der Antike zum Sternbild
Südlicher Fisch. Im Jahr 1595 untersuchte der niederländische Seefahrer und Navigator
Pieter Dirkszoon Keyser im Auftrag von
Peter Plantius den bis dahin weitgehend unbekannten südlichen Sternenhimmel. Frederick de Houtman, ein Bruder des Kapitäns,
half ihm bei der Kartographierung der
Sterne. Sie setzten insgesamt 12 neue Sternbilder ein, so auch als
eigenständiges Sternbild Den ReygherKranich. Petrus
Plancius und Jodocus Hondius setzen ihn versehentlich 1598
als Phoenicopterus, das ist die lateinische Bezeichnung für Flamingo,
auf einen Himmelsglobus, den Jodocus Hondius 1600 in den Handel brachte. Johannes
Bayer übernahm das Sternbild dann unter der heutigen Bezeichnung Grus,
zu Deutsch: Kranich, in seinen 1603 erschienenen HimmelsatlasUranometria.
Bild 01: Sternbild Kranich – Auszug aus Uranometria von Johannes Bayer 1603
Der Kranich (Grus Grus), auch Grauer Kranich oder Eurasischer Kranich genannt, ist der einzige Vertreter der Familie der Kraniche (Gruidae) in Nord- und Mitteleuropa. Seine bevorzugten Lebensräume sind Feuchtgebiete der Niederungen, wie beispielsweise Nieder- und Hochmoore, Bruchwälder, Seeränder, Feuchtwiesen und Sumpfgebiete in weiten Teilen des östlichen und nördlichen Europa, aber auch einige Gebiete im Norden Asiens. Zur Nahrungssuche finden sich die Tiere auf extensiv bewirtschafteten landwirtschaftlichen Kulturen wie Wiesen und Feldern, Feldsäumen, Hecken und Seeufern ein. Sie nehmen das ganze Jahr über sowohl tierische als auch pflanzliche Nahrung auf. Für die Rast nutzen sie weite und offene Flächen wie Äcker mit Getreidestoppeln. Als Schlafplätze werden vor allem Gewässer mit niedrigem Wasserstand aufgesucht, die Schutz vor Feinden bieten. Der Bestand hat in den letzten Jahrzehnten stark zugenommen, so dass die Art zurzeit nicht gefährdet ist.
Die
Schönheit der Kraniche und ihre spektakulären Balztänze haben schon in früher
Zeit die Menschen fasziniert.
In der griechischen Mythologie war der Kranich sowohl Apollon, dem Gott der Sonne und Demeter, der Erd- und Fruchtbarkeitsgöttin, als auch Hermes als Bote des Frühlings und des Lichts zugeordnet. So lasen die Auguren (Priester) in Griechenland aus den Flugformationen der Kraniche. Außerdem galten Kraniche als Symbol der Wachsamkeit und Klugheit und als „Vogel des Glücks“. In HomersIlias ist zu lesen, dass ein Heer von menschenfressenden Kranichen nach Süden gezogen ist, um in den Nilsümpfen das kleine Volk der Pygmäen zu jagen. In der griechischen Mythologie trägt der fliegende Kranich Steinchen im Schnabel, um sich über dem Taurusgebirge nicht durch eigene Rufe zu verraten und in die Fänge der Adler zu geraten.
Im römischen Kulturkreis hat der Kranich weitere Bedeutungen hinzugewonnen. So galt er als Symbol der „Prudentia“, des vernünftigen und klugen Handelns, der „Perseverantia“, der Beharrlichkeit, und der „Custodia“, der Sorgfalt des Handelns. Aus der „Vigilantia“, der sittlichen und militärischen Wachsamkeit, entstand der „Grus vigilans“. Dieser hält einen Stein mit der Klaue hoch, damit er im Falle des Einschlafens sogleich vom Geräusch des Fallens geweckt würde. Man findet dieses Motiv auf vielen Emblemen, Wappen und Insignien, aber auch an Häusern und Burgen. So heißt es im Giebellied des Kranichhauses in Otterndorf:
„Der Kranich hält den Stein, des Schlafs sich zu erwehren. Wer sich dem Schlaf ergibt, kommt nie zu Gut und Ehren.“
Bild 03: Detail Giebel Kranichhaus Otterndorf
In der ägyptischen Mythologie galt der Kranich als „Sonnenvogel“. Er wurde sowohl als Opfergabe für die Götter als auch als Speisevogel genutzt. In den Hieroglyphen steht seine Figur für den Buchstaben „B“
Im alten Kaiserreich China war der Kranich (chinesischPinyinhè) Symbol für ein langes Leben, Weisheit, das Alter sowie die Beziehung zwischen Vater und Sohn. Zudem galt er in der chinesischen Mythologie als „Himmelskranich“ oder „Seligenkranich“, da angenommen wurde, dass sich taoistische Priester nach ihrem Tod in einen gefiederten Kranich verwandelten oder dass die Seelen der Verstorbenen auf dem Rücken von Kranichen zum Himmel getragen würden. In der Qing-Dynastie war der Kranich Abzeichen der Zivilbeamten des ersten Rangs.
Bei den Kelten galten die Kraniche als Hüter der Oghamschrift. Der keltische Gott Ogma der Starke, ein Sohn des Elatha und der Eithne sowie Halbbruder des Sonnengottes Lugh, ist der Erfinder der Oghamschrift. Er beobachtete die Tänze und den Flug der Kraniche und entschlüsselte hierbei die Oghamschrift, die er aufgezeichnet hat.
In Irland beteten schon die vorkeltischen und keltischen Bauern zu Manannaun, ihrem Gott des Meeres und Jenseitsführer, der einen Wunderbeutel aus der Haut der Kraniche mit den Schätzen des Meeres trug, um eine gute Saat und die Seefahrer erbaten von ihm, als dem Inhaber der Ozeanfähre in die „andere Welt“, eine gute Reise.
Das in der
Sage von Herzog Ernst erwähnte Volk der Agrippiner
bestand aus Mischwesen aus Mensch und Kranich. Diese bedrängten ein
Zwergenvolk. Herzog Ernst gelang es, die Zwerge von den Kranichmenschen zu
befreien.
Die Bezeichnung „Vogel des Glücks“ leitet sich in Schweden von der Ankunft des Kranichs als Vorzeichen für den Frühling her, der Wärme, Licht und Nahrungsfülle einleitet.
In der Heraldik ist der Kranich das Symbol der Vorsicht und der schlaflosen Wachsamkeit. In der Dichtung wird der Kranich symbolisch für etwas „Erhabenes“ in der Natur verwendet.
Bild 04: Wappen von Kransberg Bild 05: Origami-Kraniche – Symbol für ein langes Leben
In Japan ist der Kranich ein Symbol des Glücks und der Langlebigkeit. Nach japanischem Volksglauben bekommt derjenige, der 1000 Origami-Kraniche (senbazuru) faltet, von den Göttern einen Wunsch erfüllt. Die älteste erhaltene Publikation zu diesem Motiv und zu Origami allgemein ist das Senbazuru Orikata von 1797. Noch heute wird zu besonderen Anlässen, wie Hochzeiten oder Geburtstagen, ein gefalteter Papierkranich überreicht. Seit dem Tode des Atombombenopfers Sadako Sasaki, die mit dem Falten von Origami-Kranichen gegen ihre durch die Strahlung verursachte Leukämie-Erkrankung ankämpfte, sind Origami-Kraniche auch Symbol der Friedensbewegung und des Widerstandes gegen Atomwaffen. Auf Hokkaido führen die Frauen der Ainu einen Kranichtanz auf, wie er auch in Korea im Hof des Tongdosa-Tempels seit der Silla-Dynastie aufgeführt wird.
Die Königin Gerana der zentralafrikanischen Pygmäen soll nach antiken Erzählungen in
einen Kranich verwandelt worden sein, weil sie sich für verehrungswürdiger als
die Göttinnen gehalten hatte.
Einer Legende
entsprechend stammen die Azteken aus der Region Aztlán, was „nahe den Kranichen“ bedeutete.
Kirchenvater
Ambrosius verwendet dieses Bild als ein
Gleichnis für die Furcht vor Gott zum Schutz gegen die Sünde und das
Teufelswerk. Weiterhin vergleicht er das Fallen des Steins mit dem Ruf der
Kirche (Glockengeläut). Zudem sollen es seinen Ansichten zufolge die Menschen
den Kranichen nachmachen, indem die Starken die Schwachen stützen.
In alten Volksmärchen und Überlieferungen tritt der Kranich, der in der Regel mit positiven Eigenschaften besetzt wird, als Verkünder von Geburten und Hochzeiten, aber auch von Krieg und Tod in Erscheinung.
Die jakutische Geschichte Die
Kranichfeder handelt von einem Kranich, der sich in ein schönes Mädchen
verwandelt, um einen Menschenmann zu heiraten. Als er eines Tages sein
abgestreiftes Federkleid wiederfindet, schwingt er sich davon, so dass er für
die Flüchtigkeit des Sommers und der Liebe steht.
2 Das Sternbild
Grus Genitiv: Gruis Abk.: Gru dt.: Kranich
Das Areal des
Sternbildes Kranich belegt in RA von 21h27m43s
bis 23h27m04s und in Dec von -56°23´27“ bis
-36°18´46“ immerhin366
Quadratgrad in den Grenzen von 1930. Diese Fläche wird im Uhrzeigersinn
eingegrenzt von den Sternbildern Südlicher Fisch, Mikroskop, Indianer, Tukan,
Phönix und Bildhauer. Vom Kranich ist von Deutschland aus in sehr klaren
Herbstnächten Ende Oktober bis Mitte November höchstens der nördlichste Teil
mit dem Stern γ Gruis zu sehen. Vollständig sichtbar ist er erst ab 34°
Nord südwärts. Die Hilfszeichnung des Kranichs hat etwa die Form eines Vogels
mit gestrecktem Hals und gespreizten Beinen. Zwei seiner Sterne, α und
β Gruis, sind auffallend hell, stehen fast auf gleicher Höhe und weisen
einen deutlichen Farbkontrast auf.
Bild 06: Das Sternbild Kranich
2.1 Die Sterne
α Gru, der hellste Stern im Kranich, ist 101 Lichtjahre entfernt. Sein Eigenname Al Nair ist altarabischen Ursprungs und bedeutet „der Erleuchtete“ oder „der Helle“. Sein blauweißes 1m7 helles Licht kommt von der 13.500 K heißen Sternoberfläche eines Hauptreihensterns der Spektralklasse B6 zu uns. Seine Position ist seitlich einer geschwungenen Sternenkette auf der Position α 22h08m14s / δ -46°57´39,5“.
β Gru leuchtet mit 2m1 aus 175 Lichtjahren Entfernung orange. Sein Licht verrät einen roten Riesen der Spektralklasse M5III mit 3400 K Oberflächentemperatur auf der Position α 22h42m40s / δ -46°53´4,5″. Dieser Stern hat keinen Eigennamen.
γ Gru ist ein 208 Lichtjahre entfernter, bläulich leuchtender Riesenstern der Spektralklasse B8III. Der arabische Name Al Dhanab bedeutet „Schwanz“. In der Zeichnung der Hilfslinien markiert er allerdings den Kopf des Kranichs. Basierend auf der Auswertung von Daten, die während der Hipparcos-Mission gesammelt wurden, hat dieser Stern einen Partner, der Gravitationsstörungen von Gamma Gruis verursacht. Wir finden dieses System auf der Position α 21h53m55,7s / δ -37°21´54“ mit 3m0 von einer 12.500 K heißen Oberfläche strahlend.
δ1 Gru ist ein von 3m97 nach 4m2 veränderlicher gelber Riesenstern der Spektralklasse G6/8III mit einer Oberflächentemperatur von 5000 K auf der Position α 22h29m16,17s / δ -43°29´44,02″. Seine Entfernung zum Sonnensystem ist mit 309 Lichtjahren angegeben. Er bildet mit Delta2 Gruis ein optisches Doppelsternsystem mit nur 16,1 Bogenminuten gegenseitigem Abstand.
δ2Gru steht auf der Position α 22h29m45,43s / δ -43°44´57,2“ in 325 Lichtjahren Entfernung und leuchtet dort pulsationsveränderlich mit mehreren Perioden von 20,6, 24,1, 42,5, 32,3 und 33,3 Tagen mit der geringen Amplitude von 0m043 bei einer mittleren Helligkeit von 4m11. Er gehört als roter Riese der Spektralklasse M4.5IIIa an und hat in 60,4“ einen 9m71 lichtschwachen visuellen Partner, der 2013 entdeckt wurde.
ε Gru ist ein kleiner blauer Hauptreihenstern der Spektralklasse A3V mit einer Oberflächentemperatur von 8600 K. Sein 3m49 helles Licht kommt aus 129 Lichtjahren Entfernung von der Position α 22h48m33,2s / δ -51°19´0“ zu uns. Seine Position in der Figur ist das Knie im südlichen Bein des Kranichs.
ζ Gru markiert den südlichen Fuß des Kranichs auf der Position α 23h00m52,8s / δ -52°45´14,8“. Sein oranges, 4m12 helles Licht kommt von der 4900 K heißen Oberfläche eines Riesensterns der Spektralklasse K1 III über eine Distanz von 112,5 Lichtjahren zu uns. Im Henry-Draper-Katalog hat er die Nummer HD 217364.
μ1Gru steht im Hals des Kranichs bei α 22h15m36,9s / δ -41°20´48“. Mü1Gruis ist ein Doppelstern dessen Einzelhelligkeiten von 5m2 und 6m68 sich für das bloße Auge als 4m79 heller Lichtpunkt darstellen. Die Hauptkomponente ist ein gelber G8III-Riese in 275 Lichtjahren Entfernung. Sein Begleiter ist auch ein G-Stern.
μ2Gru steht nur unweit südlicher von Mü1Gruis auf der Position α 22h16m26,56s / δ -41°37´38“ in 270 Lichtjahren Raumtiefe. Dieser mit 5m1 gelb leuchtende G8III-Stern steht im Verdacht ein Binärsystem zu sein, da er mit einer winzigen Amplitude periodisch variiert. Mü2Gruis entwickelt sich zu einem Riesenstern.
π Gru ist ein „echtes“ physisches Mehrfachsystem, dessen Hauptkomponenten sich in einem Abstand von 4,3 Bogenminuten (261“) um einen gemeinsamen Schwerpunkt bewegen. Somit kann das System bereits mit einem kleineren Teleskop in Einzelsterne aufgelöst werden.
π1Gru steht in 530 Lichtjahren Entfernung auf der Position α 22h22m44s / δ -45°56´52,6“ und leuchtet variabel zwischen 5m3 und 7m0 mit einer Periode von 198,8 Tagen. Als asymptotischer Riese der Spektralklasse S 5 ist er rund 2500 K heiß und schon im Übergangsstadium zum planetarischen Nebel. π1Gruis ist selbst ein physischer Doppelstern. Das System besteht aus dem Hauptstern und einem 10m7 lichtschwachen gelben Hauptreihenstern der Spektralklasse G0V in nur 2,7“ Abstand.
π2Gru sendet von der Position α 22h23m07,8s / δ -45°55´42“ sein blauweißes, 5m6 helles Licht zu uns. Die Hauptkomponente ist ein Unterriese der Spektralklasse F3III mit einer 6800 K heißen Oberfläche und hat einen 12m lichtschwachen Begleiter.
2.2 Deep-Sky-Objekte
Im Sternbild Kranich befinden sich viele Galaxien. Zur Beobachtung der helleren Galaxien, die sich fast alle im nördlichen Teil des Sternbildes befinden, benötigt man ein Teleskop von mindestens 15 cm Öffnung. Die meisten sind jedoch der direkten Beobachtung mit mittleren Amateurteleskopen schon nicht mehr zugänglich. Für Astrofotografen / Photonenjäger bietet dieses Sternbild jedoch ein reiches Jagdangebot.
IC 1459, eine elliptische Galaxie vom Typ E3 mit einer visuellen Helligkeit von 10m97 und einer Winkelausdehnung von 5,2´x 3,8´, finden wir ganz nahe der Grenze zum Südlichen Fisch auf den Koordinaten RA 22h57m10,6s / Dec -36°27´44“. Sie ist 68,8 Millionen Lichtjahre von uns entfernt und wurde am 10.Juni 1896 von James Swift entdeckt. Sie wurde auch als IC5225, PGC70090 und MCG-06-50-016 katalogisiert.
Bild 07: IC 1459 – Foto The Carnegie –Irvine Galaxy Survey
NGC 7213 ist eine Spiralgalaxie vom Typ SA mit einer Winkelausdehnung von 3,0`x 2,7`. Bei einer Entfernung von 77 Millionen Lichtjahren und einer visuellen Helligkeit von 10m1 ergibt sich eine Flächenhelligkeit von 12m3/arcmin2. Wilhelm Herschel entdeckte diese Seyfert-Galaxie am 30.09.1834, deren Position heute RA 22h09m16,2s / Dec -47°10`0,4“ ist. Seyfert-Galaxien sind Spiralgalaxien oder irreguläre Galaxien mit einem sehr hellen Galaxienkern. Die Spektren dieser Kerne zeigen charakteristische Emissionslinien von Wasserstoff, Helium, Stickstoff und Sauerstoff, die im Vergleich zu den durch Sterne angeregten Emissionslinien stark verbreitert sind. Seyfert-Galaxien sind eine Unterordnung von Galaxien mit aktivem Kern. Sie wurden nach dem Astronomen Carl Keenan Seyfert benannt, der sich in den 1940er Jahren sehr intensiv mit ihnen beschäftigte. Die Galaxie NGC 7213 beherbergt ein supermassereiches „Schwarzes Loch“.
Bild 08: NGC 7213 im Kranich – Foto CGS
NGC 7410 ist eine Balkenspiralgalaxie vom Typ SB(s)a mit einer Winkelausdehnung von 4,6´x 1,6´, einer visuellen Helligkeit von 10m4 und einer Flächenhelligkeit von 12,6/arcmin2. Ihre Position ist RA22h55m0,7s / Dec -39°39´41“ in 65,5 Millionen Lichtjahren Raumtiefe. Entdeckt wurde sie am 14.07.1826 vom schottischen Astronomen James Dunlop. NGC 7410 zeigt sich in Schräglage und einem Öffnungswinkel von weniger als 30°. Bei einer verhältnismäßig sehr hellen Zentralregion sind Einzelheiten in den äußeren Spiralarmen nur auf Fotos von Großteleskopen erkennbar.
Bild 09: NGC 7410 im Sternbild Kranich – Foto DSS2
NGC7424 ist ein schönes Feuerrad und ein klassisches Beispiel einer Balkenspiralgalaxie vom Typ SBc. Im nördlichen Teil des Sternbildes auf der Position RA 22h57m /Dec -41°04´ stehend senden ihre Sterne ein Sammellicht von 11m0 über eine Entfernung von 37,5 Millionen Lichtjahren zu uns.
Bild 10: NGC 7424 – Foto HST
Das Grus Quartett (NGC 7552, NGC 7582, NGC 7590 und NGC 7599) wird von vier großen Spiralgalaxien im nordwestlichen Teil des Sternbildes Grus gebildet. Sie liegen physikalisch sehr dicht beieinander und stehen miteinander in starker Wechselwirkung. Es wird auch angenommen, dass die hohe Starburst-Aktivität und die anschließende Bildung eines Balkens in der Scheibe von zwei der Mitglieder, NGC 7552 und NGC 7582, hierdurch ausgelöst wurden. Von NGC 7582 aus sind mehrere Gezeitenschwänze sichtbar, von denen einer auf die Nachbarn im Osten und der andere auf NGC 7552 zeigt, der in einer Projektionsentfernung von etwa 30′ nordwestlich liegt. Zum Auffinden stellt man sich am besten die Position der Seyfert-Galaxie NGC 7582 ein: RA 23h18m23,5s / Dec -42°22´14“.
Bild 11: Das Grus-Quartett NGC 7552 unten rechts, NGC7582 mittig, NGC 7590 ganz oben, NGC 7599 oben links
IC5148 ist neben all den Galaxien ein erwähnenswerter planetarischer Nebel. Entsprechend seinem ebenmäßigen runden Aussehen erhielt er den Spitznamen „Spare Tyre Nebula“, zu Deutsch: „Ersatz-Reifen Nebel“. Er befindet sich etwa 1 Grad westlich von Lambda Gruis und in der Konstellation von Grus etwa im oberen Hals des Vogels auf der Position RA 21h59m35,2s / Dec -39°23´08“. Bei einer Winkelausdehnung von derzeit 2´12“ x 2´12“ leuchtet er mit 12m0 aus einer Entfernung von 2900 Lichtjahren. IC5148 wurde 1894 vom australischen Amateurastronomen Walter Gale entdeckt. Der Zentralstern jagt seine Hüllen mit einer Geschwindigkeit von 50 Kilometern pro Sekunde auseinander, eine der schnellsten Ausdehnungen aller planetarischen Nebel.
Bild 12: IC 5148 „Ersatzreifen-Nebel“ – Foto EFOSC2 am NTT der ESO
2.3 Sonstiges
Literaturhinweise:
BLV-Bestimmungsbuch Vögel E. Bezzel / B. Gidstam
ESA-NASA HST div. Autoren
Internet – Wikipedia div. Autoren
Sternbilder von A – Z A. Rükl
Buch der Sterne Guinness
Uranometria J. Bayer
Keltische Mythen I. Clarus
Quellenangaben der Abbildungen:
Bild 01: Auszug aus Uranometria von Johannes Bayer 1603
Die Serie der Sternbildbeschreibungen wird fortgesetzt.
Wir zeigen Ihnen das Universum
Durch die weitere Nutzung der Seite stimmst du der Verwendung von Cookies zu. Weitere Informationen
Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.