Archiv der Kategorie: POLARIS

Das Sternbild Microscopium – Mikroskop

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das hier beschriebene Sternbild ist an einem sternlichtschwachen Teil des südlichen Sternenhimmels eingegliedert worden. Sein Dasein unter den Sternen verdankt es dem Einfallsreichtum des französischen Astronomen Nicolas Louis de La Caille, welcher auf diese Weise bedeutende Erfindungen seiner Zeit auf seinen 1752 bis 1756 gefertigten Karten des südlichen Sternenhimmels verewigte. Welche ungeheure Bedeutung gerade dieses Instrument für die Menschheit erlangen sollte, konnte er nur erahnen.

Bild 01: Das Sternbild Mikroskop auf einer mittelalterlichen Sternkarte

Angefangen hatte alles damit, dass ein holländischer Brillenschleifer aus Middelburg namens Hans Lippershey, oder eines seiner Kinder, per Zufall herausfand, dass zwei in einem bestimmten Abstand hintereinander in die Sichtlinie zu einem dahinter befindlichen Gegenstand gebrachte Linsen einen Vergrößerungseffekt auslösten. Am 25. September 1608 wurde von Lippershey für eine entsprechende Apparatur ein niederländisches Patent beantragt.

Zacharias Janssen (Sacharias Joanidis), ein griechischstämmiger, fähiger Optiker und Hausierer, ebenfalls aus Middelburg, reiste als Hausierer viel, betrieb  in Amsterdam eine Firma, die jedoch in Konkurs ging und war auch bekannt als Fälscher von Kupfer-, Gold- und Silbermünzen. Dadurch kam er öfter mit dem Gesetz in Konflikt und wurde auch verurteilt. Dieser Mann erfragte / beantragte im Oktober 1608 in den Niederlanden ebenfalls ein Patent für eine optische Vergrößerungsapparatur.

Kurze Zeit später wurde von Jacob Metius (echter Name Jacob Adriaansz), einem niederländischen Linsenschleifer und Instrumentenbauer, Anspruch auf das beantragte Patent erhoben. Lippershey demonstrierte seine Erfindung vor Moritz von Oranien, Graf von Nassau-Dillenburg und Kapitän-General der Vereinigten Land- und Seestreitkräfte, in Den Haag. Trotzdem erlangten weder er noch Janssen noch Metius ein Patent, da das Gerät zu einfach und zu leicht zu kopieren sei.

Janssen verkaufte seine Apparaturen als Mikroskope noch im gleichen Jahr auf einer Messe in Paris. Das erste Mikroskop Janssens war ein einfaches Rohr mit Linsen am Ende. Die Vergrößerung reichte von drei- bis neunmal.

Und so kam 1609 der italienische Astronom Galileo Galilei in den Besitz eines solchen Geräts, welches er zu einem der ersten leistungsfähigen Teleskope entwickelte. Noch 1609 kam Galileo Galilei mit einem von ihm selbst entworfenen und vom Instrumentenbauer nach seinen Plänen angefertigten Teleskop an die Öffentlichkeit.

Zacharias Janssens 1611 geborener Sohn, Johannes Zachariassen, sollte später unter Eid schwören, dass Hans Lippershey die Idee seines Vaters für das Teleskop gestohlen habe.

Nach Zacharias Janssen sind der Mondkrater Jansen und der Exoplanet Janssen benannt.

Ein Mikroskop (griechisch μικρός mikrós „klein“; σκοπεῖν skopeín „betrachten“) ist ein Gerät, das es erlaubt, Objekte stark vergrößert anzusehen oder bildlich darzustellen. Dabei handelt es sich meist um Objekte bzw. die Struktur von Objekten, deren Größe unterhalb des Auflösungsvermögens des menschlichen Auges liegt. Eine Technik, die ein Mikroskop einsetzt, wird als Mikroskopie bezeichnet. Mikroskope sind heute ein wichtiges, unverzichtbares Hilfsmittel in der Biologie, Medizin und den Materialwissenschaften. Die physikalischen Prinzipien, die für den Vergrößerungseffekt ausgenutzt werden, können sehr unterschiedlicher Natur sein. Die älteste bekannte Mikroskopietechnik ist die Lichtmikroskopie, die durch die Brillenschleifer oder Linsenmacher Hans und Zacharias Janssen aus den Niederlanden entwickelt wurde und bei der ein Objekt durch zwei oder mehr Glaslinsen beobachtet wird. Anfang des 17. Jahrhunderts erhielt das mit Objektiv und Okular ausgestattete Mikroskop in Anlehnung an das Wort „Teleskop“ seinen Namen. Die physikalisch maximal mögliche Auflösung eines klassischen Lichtmikroskops ist von der Wellenlänge des verwendeten Lichts abhängig und auf bestenfalls etwa 0,2 Mikrometer beschränkt. Diese Grenze wird als Abbe-Limit bezeichnet, da die zugrunde liegenden Gesetzmäßigkeiten Ende des 19. Jahrhunderts von Ernst Abbe beschrieben wurden. Mittlerweile sind jedoch einige Verfahren bekannt, mit denen diese Grenze überwunden werden kann.

Bild 02: Kasten-Lichtmikroskop , Optisches Institut Utzschneider & Fraunhofer 1820

2 Das Sternbild

Microscopium     Genitiv: Microscopii     Abk.: Mic     dt.: Mikroskop

Zum Auffinden bedient man sich zweckmäßig des Sternbildes Steinbock. Sein südlichster Stern, ω Cap, ist zwar auch nur 4m11 hell, aber der hellste Stern in dieser Gegend und direkt an der Sternbildgrenze zum Mikroskop, dessen Grenzen ein Areal ohne Ein- und Ausbuchtungen von 210 Quadratgrad einschließen – nämlich in RA von 20h27m362 bis 21h28m10s und in Dec von -45°05´24“ bis hoch auf -27°27´35“. Im Sommer lassen sich vom südlichen Mitteleuropa ab dem 45sten Breitengrad unterhalb des Steinbocks die nördlichsten Teile des Mikroskops erahnen bzw. bei exzellenter Horizontsicht beobachten. Seine Nachbarn sind von Nord im Uhrzeigersinn (auch Sonnenlauf) Capricornus, Sagittarius, Telescopium, Indus, Grus und Piscis Austrinus.

Bild 03: Das Sternbild Microscopium

2.1 Die Sterne

α Mic ist ein schon in mittleren Amateurteleskopen auflösbarer Doppelstern. Seine Gesamthelligkeit ist 4m9 und  strahlt aus 380 Lichtjahren Entfernung. Die Hauptkomponente variiert von 4m88 nach 4m94 und ist ein gelber Riesenstern mit dem Spektrum eines G8III-Typen, der im Abstand von 20,6“ von einem 10m0 hellen Stern begleitet wird. Seine Position ist α 20h49m58,1s / δ -33°46´47“.

β Mic ist mit 6m06 für das bloße Auge nicht mehr sichtbar.

γ Mic gehört als gelber Riese der Spektralklasse G8III an, ist 4m67 hell und 224 Lichtjahre von uns entfernt. Er hat im Abstand von 26“ einen nur 13m7 lichtschwachen sichtbaren Begleiter CCDM J21013-3215B auf der Position 94°. Wahrscheinlich ist dieser nicht gravitativ an Gamma Microscopii gebunden. γ Mic gehörte ursprünglich zum östlichen Nachbarn unter der damaligen Bezeichnung 1 Piscis Austrini. Die Pekuliargeschwindigkeit relativ zu seinen Nachbarsternen ist 1.2 km/s, daher wird er zur Ursa-Major-Bewegungsgruppe gezählt. Rückwärtsrechnungen haben ergeben das Gamma Microscopii vor etwa 3,8 Millionen Jahren das Sonnensystem in einer Entfernung von etwa 6 Lichtjahren passiert hat. Er müsste damals eine scheinbare Helligkeit von -3 gehabt haben und wäre damit heller als Sirius heute gewesen.

θ1 Mic besteht aus zwei Sternen mit den Helligkeiten 4m7 und 8m6, die sich in 2,8“ Abstand umkreisen und ihr Licht über eine Entfernung von ca. 200 Lichtjahren zu uns senden. Theta 1 steht im südwestlichen Sternbildareal auf der Position α 21h20m45,6s / δ -40°48´34,5“. Die Hauptkomponente ist ein A7-Spektraltyp dessen Licht zwischen 4m77 und 4m87 in 2,125 Tagen variiert und viele Metalllinien im Spektrum aufweist.

θ2 Mic ist ein engerer Doppelstern. Hier umkreisen sich ein 6m3- und ein 7m0-Stern im Abstand von nur 0,7“. Ihr Licht braucht bis zu uns 470 Jahre.

ε Mic ist 4m71 hell, steht in 165 Lichtjahren Entfernung und gehört der Spektralklasse A0V an.

AU Mic ist ein 12 Millionen Jahre alter roter Zwerg in 33 Lichtjahren Entfernung, der unregelmäßige Helligkeitsausbrüche zeigt. Er besitzt eine ausgedehnte Staub- und Trümmerscheibe, in der neuesten Forschungen zufolge eine Planetenentstehung vermutet wird.

2.2 Deep-Sky-Objekte

NGC 6923 ist eine mit 12m2 leuchtende Spiralgalaxie, mit ersten Anzeichen zur Umwandlung in eine Balkenspiralgalaxie, in einer Entfernung von 130 Millionen Lichtjahren. Sie wurde im Juli 1834 von Wilhelm Herschel entdeckt.

Bild 04: NGC 6923; Foto: The Carnegie-Irvine Galaxy Survey

NGC 6925 steht 3,7° nord-nordwestlich von α Microscopii und scheint mit 11m3 von der Position α 20h34m20,5s / δ -31°58´51,2“.  Sie zeigt sich uns von ihrer schrägen Seite mit einer Winkelausdehnung von 3,1´x 1,12´. Sie gehört dem Typ SA(s)bc an, steht in einer Entfernung von etwa 127 Millionen Lichtjahren und wurde im Juli 1834 von Wilhelm Herschel entdeckt.

In dieser Galaxie leuchtete im Juli 2011 eine von Stu Parker aus Neuseeland entdeckte Supernova auf. Diese erhielt die Bezeichnung SN2011ei.

Bild 05: NGC 6925; Foto: The Carnegie-Irvine Galaxy Survey

Im Sternbild Mikroskop stehen mehrere Galaxienhaufen, unter anderen Abell 3695, die aber nur den Großteleskopen zugänglich sind. (Der Abell-Katalog (engl.: Abell catalog of rich clusters of galaxies) ist ein Katalog von über 4000 Galaxienhaufen.)

2.3 Sonstiges

Literaturhinweise:

  • dtv-Atlas zur Astronomie                                                  J. Herrmann
  • Schlüsseldaten Astronomie                                             Harenberg
  • Internet Wikipedia                                                                div. Autoren
  • Internet Kuuke´s Sterrenbeelden                                Kuuke
  • Sternbilder von A – Z                                                           A. Rükl

Quellenangaben der Abbildungen:

  • Bild 01: Urania‘s Mirror, Plate 24, graviert von Sidney Hall
  • Bild 02: Museum optischer Instrumente, ww.musoptin.com
  • Bild 03: IAU und Sky & Telescope
  • Bild 04: The Carnegie-Irvine Galaxy Survey
  • Bild 05: The Carnegie-Irvine Galaxy Survey

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Sculptor – Bildhauer

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Bildhauer sind handwerkliche Künstler, die plastische Figuren, Reliefs, Halb- und Vollplastiken aus Stein oder Holz heraushauen oder Figuren, die in Kupfer, Bronze oder als Kleinplastiken sogar in Silber oder Gold gegossen werden herstellen, aber auch Terrakotta, Lehm und moderne Materialien benutzen, denn inzwischen hat sich die Bedeutung erweitert und umfasst meist auch den Bereich modellierend-künstlerischer Arbeit. Beim bildhauerisch-plastischen Arbeiten können heute ganz verschiedene Materialien kreativ bearbeitet und zusammengefügt werden.

Bildhauer schufen schon in der Antike Skulpturen, die Abbilder ihrer Vorstellung von den zeitgenössischen Göttern waren. Auch gottgleiche, weltliche Personen, Herrscher und berühmte, hochgeehrte Zeitgenossen, fanden so ihre Verherrlichung und so wurde ihr Aussehen, aus Stein oder Marmor herausgearbeitet, als Kopfplastik, Büste oder Vollstatue in Tempeln oder anderen Ausstellungsräumen der Nachwelt erhalten. Letzteres wird auch heute noch praktiziert was unter anderem die Walhalla bei Regenburg beweist.

Bild 01: „Bildhauer“, Holzschnitt von Jost Ammann 1586            
Bild 02: Walhalla Regensburg, Skulpturen in Ruhmeshalle

Das Sternbild Sculptor  wurde 1756 vom französischen Astronomen Nicolas Louis de Lacaille unter dem Namen l’Atelier de Sculpteur „Werkstatt des Bildhauers“ eingeführt. Später wurde daraus der Bildhauer. Ursprünglich dargestellt wird es als ein Tisch mit einer Büste wechselnden Aussehens. Zusätzlich ist ein Klüpfel und ein Meißel dargestellt, die auf manchen Karten auch als Apparatus Sculptoris „Werkzeug des Bildhauers“, so etwa bei Bode 1801, aufgeführt werden, und ein weiterer Meißel unter der Bezeichnung Caela Sculptoris „die Meißel des Bildhauers“, bei Samuel Leigh 1825. Bei Lacailles Erstbildnis steht zusätzlich ein Steinblock, auf dem das Werkzeug liegt, der von Bode aber entfernt wurde.

Bild 03: Entwurf l’Atelier de Sculpteur  Lacaille  1756
Bild 04: Apparatus Sculptoris   Uranographia J. Bode 1801-3

2 Das Sternbild

Sculptor     Genitiv: Sculptoris     Abk.: Scl     dt.: Bildhauer

Der Bildhauer ist ein unscheinbares Sternbild östlich des hellen Sterns Fomalhaut im Sternbild Südlicher Fisch. Keiner seiner Sterne ist heller als die 4. Größenklasse. Aufgrund seiner Lage ist dieses Sternbild nur im südlichen Mitteleuropa, Schweiz, Österreich und Süddeutschland, also erst ab 50° nördlicher Breite südwärts in den Monaten August bis Dezember vollständig sichtbar. Sein Areal am südlichen Sternenhimmel erstreckt sich  in RA von 23h06m43s bis 01h45m50s und in Dec von -39°22´21“ bis -24°48´14“ und belegt dabei 475 Quadratgrad Himmel. Der Bildhauer wird umrahmt von den Sternbildern Walfisch und Wassermann im Norden, dem Ofen im Westen, Phönix im Süden und den Südlichen Fischen im Osten. Zum Auffinden     folgt man am besten dem Stern Beta im Walfisch in südöstlicher Richtung zum Alpha-Stern im Phönix. Findet man kaum noch Sterne, so ist man am Ziel angelangt. Aufgrund seines jungen Alters und seines eher unauffälligen Erscheinungsbildes als Sternbild wird der Sculptor nicht häufig erwähnt. Dabei hat der Sculptor in seinen Grenzen durchaus beachtenswerte Objekte zu bieten. So befindet sich hier der galaktische Südpol, durch den die „Drehachse“ unserer Milchstraße geht. Auch einige interessante Galaxien, darunter die Sculptor-Gruppe, eine Galaxiengruppe in etwa 12 Millionen Lichtjahren Entfernung, befinden sich in diesem Sternbild.

Bild 05: Sternbild Sculptor

2.1 Die Sterne

α Scl ist der hellste Stern im Bildhauer, ein 673 Lichtjahre entfernter, bläulich mit 4m3 leuchtender Stern der Spektralklasse B7 IIIp mit einer Oberflächentemperatur von 13.600 K. Er ist zudem ein veränderlicher Stern vom Typ SX Arietis auf der Position α 00h58m36,3s / δ -29°21´26,9“. Im Sternbild markiert er einen Fuß oder das Gerüst des Arbeitstisches.

β Scl markiert den Klüpfel auf dem Werktisch des Bildhauers auf der Position α 23h52m58,3s  / δ -37°49´05,7“ mit einer mittleren visuellen Helligkeit von 4m37, die zwischen 4m35 und 4m39 variiert. Der Stern ist 174 Lichtjahre von uns entfernt und gehört als Unterriese der Spektralklasse B9.5III mit einer Oberflächentemperatur von 11.400 K an.

γ Scl, ein orange mit 4m4 leuchtender Riesenstern der Spektralklasse K1III mit einer 4500 K heißen Sternoberfläche, steht auf der Position α 23h18m49,4s / δ -32°31´55,2“. Im Sternbild markiert er die Büste auf dem Werktisch. Die Photonen dieses Sterns kommen aus einer Raumtiefe von 182 Lichtjahren.

δ Scl markiert die Platte des Arbeitstisches und die darauf liegenden Meißel. Am Himmel nimmt er die Position α 23h48m55,5s / δ -28°07´48,9“ ein und leuchtet von dort mit 4m57 als blauweißer A0Vp-Typ mit einer Oberflächentemperatur von 9700 K über eine Distanz von 137,4 Lichtjahren. Delta Sculptoris ist ein Dreifachsternsystem. Die Hauptkomponente, Delta Sculptoris A, ist ein weißer Zwerg mit einer scheinbaren Helligkeit von 4m59. Er hat einen schwachen Begleiter von 11m6, Delta Sculptoris B, in 3,5 Bogensekunden oder mehr als 175 astronomische Einheiten gegenseitigem Abstand auf der Position 239°. Umkreist wird dieses Paar in 74´ Distanz von einem gelben G-Typ Delta Sculptoris C, der eine scheinbare Helligkeit von 9m4 hat.

ε Scl steht in der äußersten nordwestlichen Ecke des Sternbildareals auf der Position α 01h45m38,7s /  δ -25°03´09“, ist 5m29 hell und ein physisches Doppelsternsystem, dessen einzelne Komponenten zu den Spektralklassen F2V und G5V gehören. Ihre Distanz zu uns beträgt 92 Lichtjahre. Die Hauptkomponente, Epsilon Sculptoris A, ist ein gelb-weißer Unterriesenstern mit einer scheinbaren Helligkeit von 5m29. Sie wird im Abstand von 4,6“, entsprechend 126 Astronomischen Einheiten, von Epsilon Sculptoris B, einem gelben Zwerg mit einer visuellen Helligkeit von 8m6 umkreist. A und B machen einmal alle 1200 Jahre einen Umlauf um ihr Schwerkraftzentrum. Es gibt zwei optische Begleiter, die aus dem physischen Doppelstern ein optisches Mehrfachsystem machen, nämlich einen Stern 15ter Größe und der Spektralklasse M6v zugehörig, bezeichnet mit Epsilon Sculptoris C in einem Winkelabstand von 15 Bogensekunden und einen weiteren Stern der elften Größe, Epsilon Sculptoris D, bei einem Abstand von 142 Bogensekunden. Der Doppelstern wird aufgrund der Präzession um das Jahr 2920 im Sternbild Fornax sein.

η Scl ist ein roter Riese des Spektraltyps M4III-Typ, 3600K heiß und etwa 450 Lichtjahre von der Erde entfernt. Als semiregulärer Variabler schwankt seine mittlere scheinbare Helligkeit von 4m84 zwischen 4m8 und 4m9 und pulsiert dabei mit mehreren Perioden von 22.7, 23.5, 24.6, 47.3, 128.7 und 158.7 Tagen. Seine Position an Himmel ist α 00h27m55,6s / δ -33°00´25,8“ und im Sternbild steht er fast mittig und somit im Gerüst des Werktisches.

κ Scl ist ein weites, optisches Sternenduo im nördlichen Bereich des Sternbildes Bildhauer.

κ1 Scl ist selbst ein physisches Doppelsternsystem in 224 Lichtjahren Entfernung. Die beiden Komponenten gehören der Spektralklasse F3V und F7 an. Das System kann in einem Teleskop in zwei fast gleich helle 6m1 und 6m2 und gleichfarbige Sterne im Abstand von 1,7“ aufgelöst werden.

κ2 Scl steht mit 581 Lichtjahren Entfernung deutlich tiefer im Raum als sein Partner im optischen Doppelsternsystem Kappa Sculptoris. Er gehört der Spektralklasse K2III an und ist mit 5m41 der hellere Stern.

τ Scl ist 120 Lichtjahre entfernt und besteht aus zwei Sternen der Spektralklassen F1 und F7. Die Sterne können mit einem kleineren Teleskop getrennt werden.

2.2 Deep-Sky-Objekte

NGC 253 ist als „Sculptor-Galaxie“ bekannt. NGC 253 liegt auf der Position  RA 00h47m33s / Dec -25°17´17,8“ ca. 7,3° südlich von Deneb Kaitos und ist bei einer Winkelausdehnung von 27,5´ x 6,8´ entsprechend einem Durchmesser von 70.000 Lichtjahren schon im Fernglas gut wahrnehmbar. Bei guten Bedingungen und mit einem großen Teleskop erschließt sie sich erst richtig. Im Night Sky Observers Guide wird die Galaxie für Teleskope mit 12-14″ Öffnung als erstaunliches, extrem längliches Objekt mit markanten Staubstrukturen beschrieben. Sie wird zu einem atemberaubenden Anblick und stiehlt selbst M31 locker die Schau. Sie hat eine Flächenhelligkeit von 12m9, ist 7m3 hell und somit die zweithellste Spiralgalaxie an unserem Himmel, nur die Andromedagalaxie M31 ist noch heller. Im Gegensatz zur Andromeda-Galaxie ist NGC 253 sehr stark strukturiert mit Staubbändern und Knoten und erscheint richtiggehend als plastischer Sternenstrudel.  Mit der Klassifizierung SAB(s)c ist sie eine weit geöffnete Spirale mit leichtem Balkenansatz. Ihr Sternenlicht braucht bis zu uns 11,4 Millionen Jahre. Entdeckt wurde dieses Leuchten am 23. September 1783 von Caroline Herschel.

NGC 253 bildet als zentrale Galaxie zusammen mit den Galaxien NGC 254 (ca. 4,2° nördlich im Walfisch), NGC 247 (ebenfalls im Walfisch), NGC 300 (ca. 12° südlich), NGC 7793 (ca. 8° östlich von Beta) und NGC 55 (ca. 15° südsüdöstlich von NGC 253) die Sculptor-Galaxiengruppe, die eine direkte Nachbargruppe unserer Lokalen Gruppe ist.

Bild 06: NGC 253 Sculptor- oder Silberdollar-Galaxie

NGC 288,  ein 8m1 Kugelsternhaufen, liegt ca. 1,5° südöstlich von NGC 253, 37′ nord-nordöstlich des südlichen Galaktischen Pols, 15′ südsüdöstlich eines Sterns der 9. Größe und ist von einer halbkreisförmigen Sternenkette umgeben, die sich im Südwesten öffnet. Seine Position ist RA 00h52m45s / Dec -26°35`. Im kleinen Fernrohr erscheint er nur als ein matter Nebelschimmer. In größeren Fernrohren kann man ihn bei Vergrößerungen ab 200 x in Tausende schwacher Sterne aufgelöst sehen. NGC 288 hat eine Winkelausdehnung von 13´ entsprechend einem halben Vollmonddurchmesser und bei einer Entfernung von  ca. 30.000 Lichtjahren einem realen Durchmesser von 120 Lichtjahren. Seine visuelle Erscheinung wurde 1888 von John Dreyer beschrieben: „Der Kugelsternhaufen ist nicht sehr konzentriert und hat einen gut aufgelösten, 3′ großen, dichten Kern, der von einem viel diffuseren und unregelmäßigeren Ring mit 9′ Durchmesser umgeben ist. Sterne in der Peripherie erstrecken sich weiter nach Süden und besonders nach Südwesten“. Entdeckt wurde er schon am 27. Oktober 1785 von Friedrich Wilhelm Herschel.

Eine Besonderheit ist, dass nur 37´ nordnordöstlich dieses Kugelsternhaufens der Südpol unserer Galaxis (GSP) liegt.

Bild 07: NGC 288 Kugelsternhaufen nahe dem GSP

NGC 55 ist eine weitere helle Galaxie, die allerdings am Rand der Sculptor-Gruppe  auf der Position RA  00h14m53,6s / Dec -39°11´47,9“ liegt. Sie befindet sich schon im Grenzgebiet zur Lokalen Gruppe. In älterer Literatur findet man sie daher oft als Mitglied der Lokalen Gruppe angegeben. Bei NGC 55 blicken wir fast auf die Kante, so daß eine Spiralstruktur schwer zu erkennen ist. Daher wird die Klassifikation als Spiralgalaxie nicht von allen Astronomen geteilt. Einige sehen NGC 55 mehr als irreguläre Galaxie vom Typ SB(s)m.

NGC 55 hat eine Winkelausdehnung von 32,4′ × 5,6′ entsprechend einem Durchmesser von 55.000 Lichtjahren, eine scheinbare Helligkeit von 7m8 und eine Flächenhelligkeit von 13,3´pro Quadratgrad. Damit ist diese Spiralgalaxie, die zur Sculptor-Gruppe gehört, die zwölfthellste Galaxie am Himmel. Ihr Licht braucht bis zur Erde  5,9 Millionen Jahre,  ist allerdings in Mitteleuropa unbeobachtbar. Obwohl das Sternsystem zur Sculptor-Gruppe gezählt wird, hat es eine Radialgeschwindigkeit, die auf eine Zugehörigkeit zur Lokalen Gruppe schließen lässt. NGC 55 wurde am 4. August 1826 von James Dunlop entdeckt.

Bild 08: NGC 55 Randmitglied der Sculptorgruppe

NGC 300 ist eine weitere sehr schöne Spiralgalaxie in der Sculptor-Gruppe auf der Position RA 00h54m53s / Dec -37°41´04“. Auf NGC 300 sehen wir direkt von oben, so daß sehr schön ihre Spiralstruktur mit den weit gewundenen Spiralarmen in der Klassifizierung SA8s)d zur Geltung kommt. Sie hat eine Winkelausdehnung von 21,9′ × 15,5′, eine Flächenhelligkeit von 13m9 und eine visuelle Helligkeit von 8m1. Sie ist rund 7 Millionen Lichtjahre vom Sonnensystem entfernt und mit einem Durchmesser von etwa 70.000 Lichtjahren deutlich kleiner als unsere Milchstraße. Das Objekt wurde am 5. August 1826 von dem schottischen Astronomen James Dunlop entdeckt. NGC 300 und NGC 55 sind nur etwa eine Million Lichtjahre voneinander entfernt, daher nimmt man an, dass es sich um ein gravitativ gebundenes Paar handelt.

Bild 09: NGC 300 vor Hintergrundgalaxien

NGC 7793 ist eine Spiralgalaxie vom Hubble-Typ SA(s)dHII. NGC 7793 hat bei einer Winkelausdehnung von 9,3 × 6,3′ eine Flächenhelligkeit von 13m3 und eine visuelle von 9m0. Die Galaxie befindet sich auf der Position RA23h57m49,8s / Dec -32°35´27,7“  etwa 13 Millionen Lichtjahre vom Sonnensystem entfernt und hat einen Durchmesser von etwa 55.000 Lichtjahren. NGC 7793 wurde am 14. Juli 1826 vom schottischen AstronomenJames Dunlop entdeckt. Eine Gruppe europäischer Forscher hat mit Hilfe der Teleskope der Europäischen Südsternwarte einen Mikroquasar in einem der Spiralarme von NGC 7793 entdeckt, der vor allem durch besonders heftige Materieausstöße auffällt. Das Schwarze Loch, welche das Zentrum des Mikroquasars bildet, nimmt dabei nicht nur große Mengen Materie auf, sondern beschleunigt und stößt diese in Form von Jets aus. Eine Gasblase mit etwa 1.000 Lichtjahren Durchmesser dehnt sich mit fast 0,1 Prozent Lichtgeschwindigkeit aus.

Bild 10: NGC 7793, Bild ESO VLT Paranal

Weitere, aber lichtschwächere Galaxien der Sculptor-Gruppe befinden sich sowohl in diesem als auch in den Nachbarsternbildern.

2.3 Sonstiges

Bild 11: Sternbild Sculptor mit Nachbarn

Literaturhinweise:

  • Internet – Astromedia                                div. Autoren
  • Internet – Wikipedia                                   div. Autoren
  • Internet – Astronomie.de                         div. Autoren
  • dtv-Atlas Astronomie                                 J. Herrmann
  • Buch der Sterne                                             Guinness
  • Die großen Sternbilder                              I. Ridpath
  • Sternbilder von A – Z                                  A. Rükl
  • Was Sternbilder erzählen                        G. Cornelius

Quellenangaben der Abbildungen:

  • Bild 01:  Wikimedia Commons the free media repository / Dt. Fotothek  Ständebuch  Auszug Bildhauer Holzschnitt Jost Ammann 1586
  • Bild 02:  eigenes Foto
  • Bild 03:  wgsebald.de
  • Bild 04:  Auszug aus Karte XVII der Uranographia 1801 von J. E. Bode
  • Bild 05:  Wikimedia Commons the free repository  Grenz- und Skelettlinien umcoloriert
  • Bild 06:  https://skyandtelescope.0rg/wp-content/uploads2019-01-09_5c355f919833b_NGC253  wcreech gedreht und auf 13×18 zugeschnitten
  • Bild 07:  googleusercontent.com/unnamed
  • Bild 08:  ESO „Two Galaxies for a Unique Event“ Photo Release No eso0914-en-us European Southern Observatory
  • Bild 09:  eso.org/public/germany/images/eso0221a/lang
  • Bild 10:  ESO VLT Paranal  upload/wikimedia.org/wikipedia/commons/4/43/Phot-14b-09-fullres_2.jpg
  • Bild 11:  IAU-Constellations

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Fundament liegt!

Am heutigen 04. Dezember 2020 wurde das Betonfundament für den neuen Beobachtungsturm der Sternwarte Lübeck gegossen!

Foto: Oliver Paulien
Foto: Oliver Paulien

Vertreter der gemeinnützigen Sparkassenstiftung, die das Projekt mit 233 000 Euro Förderung erst ermöglicht hat, sowie des ASL e.V. und natürlich der ausführenden Baufirmen waren bei der Fundamentschüttung vor Ort, um diesen historischen Moment besonders zu würdigen.

V. l. n. r.: Oliver Paulien (ASL e.V.), Hanno Tessmer (gemeinnützige Sparkassenstiftung), Dr. Ulrich Bayer (ASL e.V.), Dr. Radoslaw Mazur (ASL e.V.), Ralf Biegel (ASL e.V.), Ulrich Kruse (ASL e.V.), Frank Pultar (ASL e.V.), Michael Kremin (ASL e.V.). Foto: Oliver Paulien

Eine „Zeitkapsel“ wurde mit Andenken an die Historie der Sternwarte und das besondere Jahr 2020 sowie mit guten Wünschen für die Zukunft bestückt und mit im Fundament versenkt.

Diese Zeitkapsel wurde im Fundament des Beobachtungsturms einzementiert. Foto: Oliver Paulien
Dort bleibt die Kapsel für hoffentlich mindestens 100 Jahre. Foto: Oliver Paulien

Wir hoffen natürlich, dass dieser Beobachtungsturm Lübeck und seinen Bürgern viele Jahre erhalten bleibt. Doch sollten in der Zukunft einmal Reste des Fundaments ausgegraben werden, können die Archäologen unter anderem folgenden Inhalt in der Zeitkapsel finden (Fotos: Ulrich Bayer):

  • Jubiläumsausgabe der Vereinszeitschrift Polaris
  • Schreiben der gemeinnützigen Sparkassenstifung
  • Ausgabe der Lübeckischen Blätter mit Bericht über das Bauprojekt
  • Gruppenfoto des ASL e.V.
  • Boardingpässe für eine Reise zum Mars

Wer weiß, vielleicht war bereits der erste Mensch auf dem Mars, wenn die Zeitkapsel einmal ausgegraben wird… Fotos: Ulrich Bayer

Die Sternbilder Hydrus – Kleine Wasserschlange und Mensa – Tafelberg

Nachbarn am südlichen Sternen(losen)himmel

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Das Besondere an diesem Sternbildartikel

Wie schon aus der Überschrift ersichtlich ist, beschreibe ich hier zwei benachbarte Sternbilder, welche sich in einer sternenlichtschwachen, also scheinbar sternlosen Gegend des Südsternhimmels befinden. Beide haben aber in ihrer näheren Umgebung auffällige Himmelsobjekte, die uns das Auffinden der nachfolgend beschriebenen Sternbilder erleichtern bzw. ermöglichen.

Zudem möchte ich eine scheinbare Diskrepanz bei der Angabe der Sternbildgrenzen anhand dieser beiden Sternbilder aufklären. Seit der offiziellen Festlegung der Sternbildgrenzen und der verbindlichen Einführung der heute gültigen 88 Sternbilder durch die Internationale Astronomische Union (IAU) im Jahr 1930 lesen wir:

Das Sternbild XYZ erstreckt sich in RA von xa / bis xz und in Dec von ya / bis yz.

Somit scheinen alle Sternbilder viereckig, quadratisch oder rechteckig zu sein, wobei einige Gebiete scheinbar zu beiden benachbarten Sternbilder gehören, weil z.B. die östliche Sternbildgrenze entsprechend der Koordinaten durch westliche Teile des Nachbarn zieht und dessen westliche Sternbildgrenze anscheinend teilweise im östlichen Teil seines Nachbarn liegt.

Auflösung: Beide Nachbarn weisen an ihrer gemeinsamen Sternbildgrenze rechtwinklige Ein- bzw. Ausbuchtungen auf und die Sternbildkoordinaten geben jeweils immer nur die äußersten Längen- und Breitengrade an. Somit haben die Sternbilder auch in der Regel kleinere Flächeninhalte, als sie bei der Rechnung mit den Sternbildkoordinaten als Resultat herauskommen. Auch hier gibt es wieder Ausnahmen, denn die Sternbilder Canis Major, Chamäleon, Corona Australis, Crux, Microscopium, Pisces Australis, Scutum, Sextans, Telescopium und Volans sind echte, geradlinige, rechtwinklige Vierecke.

Bild 01: Die benachbarten Sternbilder Tafelberg und Kleine Wasserschlange

2 Der Name Hydrus

Als Urheber dieses Sternbildes kommen wieder einmal die Niederländer Keyser und de Houtman ins Spiel. (Näheres hierzu siehe „Das Sternbild Grus – Kranich“). Ihre Himmelskarten von 1895 mit den darin vorgeschlagenen 12 neuen Sternbildern wurden von Johann Beyer 1603 in dessen Uranometria übernommen und somit veröffentlicht. Als neuzeitliches Sternbild hat Hydrus, die kleine, südliche oder auch „männliche“ Wasserschlange, keine antike Mythologie. Was die Niederländer dazu veranlasste, dieses Sternbild „De Waterslang“ zu benennen, ist nicht belegt. Allerdings waren Seeschlangen vor den Küsten der tropischen Meere häufig zu beobachten. Hydrus gilt als das südliche Gegenstück der Hydra, der nördlichen oder „weiblichen“ Wasserschlange.

3 Das Sternbild Hydrus

Hydrus     Genitiv: Hydri     Abk.: Hyi     dt.: Kleine (südl. oder männl.) Wasserschlange

Die  Sternbildkoordinaten des Hydrus lauten RA 0h06m08s bis 4h35m11s / Dec -82°03´52“ bis -57°50´54“. Diese schließen, abzüglich der Einbuchtungen durch Tukan, Tafelberg und Pendeluhr, ein Areal von 243 Quadratgrad ein. Die umgebenden Nachbarsternbilder sind von Nord im Sonnenlauf Eridanus, Phönix, Tukan, Oktant, Tafelberg, Goldfisch, Netz und Pendeluhr. In diesem umschlossenen Gebiet sind nur 2 Sterne heller als dritte Größe. Als Auffindehilfe bilde man ein rechtwinkliges Dreieck aus dem 0m5 hellen, blau leuchtenden Stern Achernar = Alpha Eridani und den beiden Magellanschen Wolken. Darin befindet sich der Großteil des Sternbildes Hydrus.

Um es vollständig sehen zu können, muss man bis 8° vor den Äquator nach Süden reisen. Von Mitteleuropa ist es nie zu sehen, auch nicht teilweise.

3.1 Die Sterne

α Hyi steht etwa 5° südwestlich des hellen Sterns Achernar auf der Position α 01h58m46,2s / δ -61°34´11,5“ und ist mit 2m9 nur der zweithellste Stern im Hydrus. Er gehört zur Spektralklasse F0V, leuchtet gelb, ist 7500 K heiß und sein Licht braucht 72 Jahre bis zu uns.

Im Chinesischen war er vor der Einführung der europäischen Konstellationen auf der südlichen Hemisphäre ein Teil des Sternbildes 蛇 首 (Shé Shǒu), was Schlangenkopf bedeutet.  Dieser Schlangenkopf bestand aus α Hydri und β Reticuli. Uns fremde Sternbilder aus anderen Kulturkreisen werden als Asterismen bezeichnet (Asterismus: Sternkonfiguration, die keine Entsprechung in einem der 88 Sternbilder der IAU hat). α Hydri selbst hatte den Eigennamen  蛇 首 一 (Shé Shǒu yī,: der erste Stern des Schlangenkopfes).

β Hyi ist mit 2m8 der hellste Hydrus-Stern und steht südlich der Kleinen Magellanschen Wolke auf der Position α 00h25m45s / δ -77°15´15,3“. Von dort leuchtet er als Unterriese und G2IV-Typ mit einer Oberflächentemperatur von 5800 K über eine Distanz von 24,3 Lichtjahren. Er besitzt eine ähnliche Masse wie unsere Sonne, ist aber mit einem Alter von etwa 7 Milliarden Jahren weiter entwickelt und hat sich auf einen Durchmesser von über 2 Millionen Kilometer aufgebläht.

Im Jahr 2002 haben Endl et al. die mögliche Anwesenheit eines unsichtbaren Begleiters, der Beta Hydri umkreist, durch Veränderungen in der Radialgeschwindigkeit mit einer Periode von mehr als 20 Jahren, angedeutet. Ein nichtstellares Objekt mit einer minimalen Masse von 4 Jupitermassen und einem Orbit von etwa 8 AU könnte die Beobachtung erklären. Wenn das bestätigt würde, wäre es ein echtes Jupiter-Analogon, wenn auch viermal so massiv. Diese Vermutung wurde durch die in 2012  veröffentlichten CES- und HARPS-Messungen allerdings nicht bestätigt. Stattdessen könnten die langfristigen Radialgeschwindigkeitsvariationen auch durch den magnetischen Zyklus des Sterns verursacht werden.

γ Hyi, der dritthellste Stern im Sternbild Kleine Wasserschlange, ist ein von 3m26 nach 3m33 pulsierend veränderlicher roter Riese der Spektralklasse M1III mit einer Oberflächentemperatur von 3500 K. Mit diesen Charakteristika lässt er sich am ehesten dem asymptotischen Riesenzweig des HR-Diagramms zuordnen. Er hat etwa die gleiche Masse wie die Sonne, hat sich aber auf das 62-fache des Sonnenradius ausgedehnt und strahlt das 513-fache der Sonnenleuchtkraft aus seiner vergrößerten Photosphäre. Gamma Hydri liegt ca. 12,3° östlich von Beta auf der Position α 03h47m14,3s / δ -74°14´22,2“ und ist ca. 215 Lichtjahre von uns entfernt.

VW Hyi liegt 3° nordöstlich von Gamma und ist eine Zwergnova vom Typ SU Ursae Majoris. (Im Gegensatz zu einer klassischen Nova, bei der das explosionsartige Einsetzen des Wasserstoffbrennens an der Oberfläche des Weißen Zwerges, zu einem Helligkeitsanstieg führt, entstehen die Ausbrüche bei einer Zwergnova durch Helligkeitsanstiege in der Akkretionsscheibe um den Weißen Zwerg.) VW Hydri ist ein dichtes binäres System, das aus einem weißen Zwerg und einem anderen Stern besteht, wobei der erstere Materie vom anderen Stern in eine helle Akkretionsscheibe abzieht. Diese Systeme sind durch häufige Eruptionen und seltenere Helligkeitsüberschläge gekennzeichnet. Erstere sind glatt, während letztere kurze „Überhöhungen“ besonderer Aktivität zeigen. VW Hydri ist eine der hellsten Zwergnovae am Himmel. Sie hat eine normale Helligkeit von 14m4 und kann während der Spitzenaktivität bis auf 8m4 aufhellen. Ihre Oberflächentemperatur liegt bei 18.000 +/- 2000 K.

π1,2 Hyi an der Nordsüdgrenzecke zum Sternbild Pendeluhr ist ein optischer Doppelstern, bestehend aus Pi1 Hydri und Pi2 Hydri, welche schon in Ferngläsern trennbar sind. Etwa 476 Lichtjahre entfernt ist Pi1 ein roter Riese vom Spektraltyp M1III, der zwischen den Magnituden 5.52 und 5.58 variiert. Pi2 ist ein orangefarbener Riese vom Spektraltyp K2III, leuchtet mit einer Magnitude von 5.7 und ist rund 488 Lichtjahre von der Erde entfernt.

 
GJ 3021 ist ein sonnenähnlicher Doppelstern, dessen Hauptkomponente GJ 3021A unserer eigenen Sonne sehr ähnlich ist, nur 57 Lichtjahre entfernt liegt und ein spektraler Typ G8V mit einer Magnitude von 6.7 ist. Er hat einen jovianischen Planetenbegleiter (GJ 3021Ab). Der Planet umkreist in etwa 0,5 AE seine Sonne in einen Zeitraum von etwa 133 Tagen und hat eine Mindestmasse von 3,37-mal Jupiter. Das System ist komplex, da der schwache Stern GJ 3021B, ein roter Zwerg vom Spektraltyp M4V, die Hauptkomponente in einer Entfernung von nur 68 AE umkreist.

η Hyi ist ein weiteres optisches Doppelsternsystem, bestehend aus Eta1 und Eta2.

η1Hyi ist ein blau-weißer Hauptreihenstern des Spektraltyps B9V mit 12000 K Oberflächentemperatur, der im Verdacht stand, variabel zu sein. Eta1Hyi befindet sich etwas mehr als 700 Lichtjahre vom Sonnensystem entfernt. Seine Position ist α 01h52m34,7s / δ -67°56´40,2“.

η2Hyi befindet sich auf α 01h54m13s / δ -67°38´50,3“, hat eine Magnitude von 4.7 und ist ein rund 220 Lichtjahre entfernter gelber Riesenstern vom Spektraltyp G8.5III, der sich aus der Hauptreihe fort entwickelt hat und sich auf seinem Weg zum Roten Riesen ausdehnt und abkühlt. Berechnungen seiner Masse deuten darauf hin, dass er für den größten Teil seines Bestehens höchstwahrscheinlich ein weißer Hauptreihenstern vom Typ A war, mit etwa der doppelten Masse unserer Sonne. Ein Planet, Eta2 Hydri b, der die 6,5-fache Jupitermasse aufweist, wurde 2005 entdeckt. Er umkreist Eta2 alle 711 Tage in einer Entfernung von 1,93 Astronomischen Einheiten (AU).


HD 10180 Es wurde bis heute herausgefunden, dass vier Sternsysteme in Hydrus Exoplaneten haben, einschließlich dem  sonnenähnlichen Stern HD 10180. Dieser soll mindestens 7 Planeten besitzen und möglicherweise noch zwei weitere, also insgesamt neun Planeten. Damit würde er mehr Planeten aufweisen als jedes andere bis zum heutigen Tag bekannte System einschließlich des Sonnensystems. HD 10180 liegt auf der Position α 01h37m53,6s / δ -60°30´41,3“, ist 127 Lichtjahre von der Erde entfernt und hat eine scheinbare Helligkeit von 7m33. Er gehört der Spektralklasse G1V an, ist 5400 K heiß und leuchtet gelblich.

Das Planetensystem von HD 10180 stellt sich nach derzeitiger Kenntnis wie folgt dar:

HD 10180 b ist ein unbestätigtes Objekt. Der vermutete Planet liegt 0,02 AE vom Stern entfernt, braucht etwas mehr als 1 Tag für einen Umlauf und hat eine Mindestmasse, die etwa der Masse der Erde entspricht.

HD 10180 c liegt 0,06 AE vom Stern entfernt (ca. 6-mal näher als der Merkur an der Sonne), braucht 5,4 Tage für einen Umlauf und hat eine Mindestmasse von ca. 13 Erd- oder 0,04 Jupitermassen.

HD 10180 d liegt etwa 0,1 AE von seinem Stern entfernt, benötigt etwa 11,5 Tage für eine Umrundung und hat eine ähnliche Mindestmasse wie HD 10180 c.

HD 10180 e befindet sich ca. 0,3 AE entfernt von HD 10180 (etwas näher als der Merkur bei der Sonne), braucht etwa 60 Tage für eine Umrundung und ist mit einer Mindestmasse von ca. 0,08 Jupitermassen wahrscheinlich ein Gasriese.

HD 10180 f liegt 0,5 AE vom Zentralgestirn entfernt (etwas näher als die Venus bei der Sonne), benötigt 129 Tage für einen Umlauf und hat eine ähnliche Mindestmasse wie HD 10180 e.

HD 10180 g befindet sich 1,4 AE von seinem Stern entfernt (ähnlich wie der Mars bei der Sonne), braucht ca. 1,7 Jahre für einen Umlauf und hat etwa 0,07 Jupitermassen.

HD 10180 h bewegt sich schließlich etwa 3,4 AE von HD 10180 entfernt, braucht etwa 6,3 Jahre für einen Umlauf und ist mit ca. 0,2 Jupitermassen der Exoplanet mit der größten Mindestmasse unter den bekannten Planeten dieses Systems.

3.2 Deep-Sky-Objekte

IC1717 ist ein verloren gegangenes Objekt aus dem Indexkatalog der Nebel (IC). Der IC war ein Anhang zum Neuen Gesamtkatalog (NGC). Beide wurden von John Louis Emil Dreyer (J. L. E. Dreyer) zusammengestellt. Die NGC enthielt Beobachtungen von William Herschel und seinem Sohn John. Der IC wurde aus Beobachtungen von Galaxien, Clustern und Nebeln zwischen 1888 und 1907 zusammengestellt. Objekt Nummer 1717 aus dem IC ist ein interessanter Fall. Dreyer selbst beobachtete IC 1717 und katalogisierte es als sehr schwach, sehr klein und sehr ausgedehnt mit einem stellaren Kern. Dreyer, der als aufmerksamer Beobachter bekannt ist, muss an diesem Ort etwas gesehen haben, aber jetzt ist dort nichts mehr zu erkennen. Vermutlich hat er damals einen Kometen gesehen, dessen Bahn aber nicht berechnet. Es gibt allerdings ganz in der Nähe einen Stern, Eta2 Hydri.


PGC 6240 ist eine etwa 350 Millionen Lichtjahre entfernte Riesenspiralgalaxie mit dem schönen Namen „Weiße Rose Galaxie“. Sie befindet sich im südlichen Teil des Sternbildes Hydrus auf der Position RA 01h41m31,38s / Dec -65°36´57,5“ und hat nebelige Schalen von Sternen, die sich um ein leuchtendes Zentrum drehen, in dessen Nähe wenige Schalen liegen, während andere in einiger Entfernung liegen. Diejenigen, die vom Zentrum entfernt sind, scheinen von der weißen Rose getrennt zu sein. Das Alter von Kugelsternhaufen in dieser Galaxie ist variabel. Sie umfassen eine Population von relativ jungen Kugelsternhaufen, die etwa 400 Millionen Jahre alt sind, eine weitere Gruppe von älteren, die rund 1 Milliarde Jahre alt sind, und wieder andere, die sogar noch älter sind. Das Alter der jüngeren stimmt mit dem Alter der Muscheln oder Schalen aus Sternen um die eigentliche Galaxie überein. Dies deutet darauf hin, dass die jüngeren Cluster und Schalen in den Sternentstehungsstadien nach der Verschmelzung der Galaxie mit einer anderen Galaxie in der jüngsten Vergangenheit entstanden sind. Die wundervollen, blütenblattartigen Schalen der Galaxie PGC 6240 werden hier vom NASA / ESA-Hubble-Weltraumteleskop in einem komplizierten Kompositfoto erfasst, das PGC 6240 vor einem Himmel voller entfernter Hintergrundgalaxien zeigt.

https://cdn.spacetelescope.org/archives/images/large/heic1318a.jpg
Bild 02: PGC 6240 – Die „Weiße Rose“-Galaxie

NGC1511 ist eine Spiralgalaxie in Kantensicht, eine sogenannte Edge-on-Galaxy. Ihre Position ist RA 03h59m36,8s / Dec -67°38´05“ und ihre Entdeckung geschah am 2. November 1834 durch John Herschel.

http://cgs.obs.carnegiescience.edu/CGS/data/images/NGC1511_color.jpg
Bild 03: NGC 1511 – eine Edge-On-Galaxy

4 Der Name Mensa

Hier taucht wieder der Name Nikolas Louis de La Caille als Namensgeber auf, der am Fuße des Tafelberges bei Kapstadt in Südafrika ein eigenes Observatorium betrieb.1750 reiste er für vier Jahre an das Kap der Guten Hoffnung, um dort die Parallaxen des Mondes, der Venus und des Mars genauer zu berechnen. Seine Positionsbestimmungen trugen dazu bei, die Distanzen dieser Himmelskörper präziser als es bis dahin möglich war, zu bestimmen. Außerdem beobachtete er die Sternbilder des Südhimmels, benannte insgesamt 14 neue und katalogisierte hierbei fast 10.000 Sterne. Seine in Südafrika durchgeführten Positionsmessungen an Fixsternen belegten auch die Richtigkeit der von Isaac Newton vorgetragenen Vermutung, dass die Erde keine Kugel sei, sondern – durch die Fliehkraft bedingt – am Äquator einen größeren Durchmesser haben müsse als von Pol zu Pol. Lacaille kam jedoch zu dem Ergebnis, die Wölbung sei auf der Südhalbkugel der Erde geringer (flacher) als auf der Nordhalbkugel. Dies wird als Meridian-Problem bezeichnet.

Ähnlich wie der echte Tafelberg, dessen Gipfel Devil´s Peak fast ständig in Wolken eingehüllt ist, wird auch der himmlische Tafelberg teilweise von einer Wolke, nämlich der Großen Magellanschen Wolke, verdeckt.

Bild 04: Tafelberg bei Kapstadt – links Devil´s Peak

5 Das Sternbild Mensa

Das Sternbild Mensa ist das lichtschwächste Sternbild am Himmel und wäre ohne die hier hineinragende Große Magellansche Wolke fast ohne jeden beobachterischen Reiz. Es nimmt eine Fläche von nur 153 Quadratgrad ein, die sich in RA von 3h12m56s bis 7h36m52s und in Dec von -85°15´41“ bis hoch auf -69°44´48“ erstrecken und von Norden im Sonnenlauf umrahmt werden von Dorado, Hydrus, Oktans, Chamäleon und Pisces Australis. Vollständig sichtbar ist es erst in Äquatornähe, nämlich ab dem 5ten Breitengrad südwärts und bei uns ganzjährig nicht einmal teilweise.

Mensa     Genitiv: Mensae     Abk.: Men     dt.: Tafelberg

5.1 Die Sterne

α Men ist mit nur 5m1 der hellste Stern. Er steht auf der Position α 06h10m14,47s / δ -74°45´10,9“. Alpha Mensae ist etwa 33,1 Lichtjahre vom Sonnensystem entfernt und hat eine relativ hohe Eigenbewegung am Himmel, durch die er in den letzten 250.000 Jahren eine Annäherung an die Sonne von 10 Lichtjahren (3.2 pc) gemacht hat. Ein bei diesem Stern entdeckter Infrarotüberschuss zeigt höchstwahrscheinlich das Vorhandensein einer zirkumstellaren Staubscheibe mit einem Radius von über 147 AE an. Die Temperatur dieses Staubs liegt unter 22 K. Bis jetzt sind keine planetarischen Gefährten entdeckt worden. Alpha Mensae hat einen roten Zwergbegleitstern in einem Winkelabstand von 3,05 Bogensekunden entsprechend einem Abstand von etwa 30 AU. Der Stern selbst ist ein 5m09 heller, gelblich leuchtender G7V-Spektraltyp mit einer Oberflächentemperatur von 5580 K bei einem Alter von 5,4 Milliarden Jahren.

β Men ist der nördlichste noch mit freiem Auge sichtbare Stern am Rande der Großen Magellanschen Wolke auf der Position α 05h02m42,99s / δ -71°18´51,5“. Als gelber Riese der Spektralklasse G8III ist er 5000 K heiß und sendet sein 5m31 helles Licht über eine Entfernung von 790 Lichtjahren zu uns. Sein Alter wird mit 270 Millionen Jahren angegeben; er kommt uns mit einer Radialgeschwindigkeit von 114.000 km/s näher.

γ Men hat als gelber Riese das Spektrum eines 3600 K heißen K4III-Stern, der sein 5m18 helles Licht aus 101 Lichtjahren Entfernung zu uns sendet. Er ist ein Doppelstern.

η Men gehört neben α, β und γ zu den 4 figurbildenden Sternen. η Men wechselt gerade von einem orangen zum roten Riesen. Sein 5m47 helles Licht kommt von der 3900 K heißen Sternoberfläche eines K6III-Spektraltyps, der auf der Position α 04h55m11,14s/ δ -74°56´13,2“ steht. Seine Entfernung wurde mit 712 Lichtjahren angegeben, die jedoch durch Hipparcos-Messungen im Jahr 1997 auf 668,37 Lichtjahren korrigiert wurde.

δ Men steht im westlichen Teil des Sternbildes auf der Position α 4h17m59,18s / δ -80°12´51,1“ in einer Distanz zu uns von 408 Lichtjahren. Sein 5m67 helles Licht kommt von der rund 4000 K heißen Oberfläche eines Riesen im Übergang von K2III nach K3III.

ε Men befindet sich westlich neben Delta Mensae nahe der Grenze zum Chamäleon. Seine Position ist α 7h25m19s / δ -79°05´39,1“ und seine Helligkeit liegt bei 5m54. Diese kommt von der 4300 K heißen Oberfläche eines K2III-Spektraltypen, der gerade von orange nach rot abkühlt und in einer Raumtiefe von 466 Lichtjahren steht.

π Men liegt im zentralen Bereich des Sternbildes auf der Position α 5h37m9,9s / δ -80°28´8,8“. Pi Mensae ist etwa 59,4 Lichtjahre von der Sonne entfernt. Laut dem Eintrag für HR 2022 im Yale Bright Star Catalogue (im Yale Bright Star Catalogue YBS sind alle Sterne mit einer scheinbaren Helligkeit von 6.5 oder heller aufgelistet – also in etwa alle Sterne, die von der Erde aus bei besten Bedingungen mit bloßem Auge zu erkennen sind. Die Sterne des Katalogs tragen die Bezeichnung HR vor ihrer Nummer; dieses Kürzel soll an den 1908 veröffentlichten Vorgänger-Katalog erinnern, den Harvard Revised Photometry Catalogue) ist Pi Mensae ein Mitglied der 61 Cygni Stellar Moving Group. Am 15. Oktober 2000 kündigten Astronomen um Butler et al. die Entdeckung eines Jupiter-ähnlichen Planeten um diesen sonnenähnlichen Stern an, der die systematische Bezeichnung Pi Mensae b erhielt. Pi Mensae wurde zu einem der Top-100-Zielsterne für den geplanten terrestrischen Planetenfinder (TPF) der NASA.

5.2 Deep-Sky-Objekte

Die Große Magellansche Wolke (ESO 56-115) ist eine von zwei irregulären Zwerggalaxien in nächster Nachbarschaft zu unserer Galaxis und damit Teil der Lokalen Gruppe. Die Große Magellansche Wolke ist nach neueren Forschungen am Paranal-Observatorium vom März 2013 162.980 Lichtjahre +/- 2% entfernt und enthält ungefähr 15 Milliarden Sterne. Als Balkenspiralgalaxie von Typ SBm/irr hat sie eine Längsausdehnung von 6 Winkelgrad. Bei einer visuellen Helligkeit von 0m9 finden wir sie auf den Koordinaten RA 5h24m / Dec -69°48´. Im Fernrohr zeigt sich ihr Charakter als Galaxie, die aus Sternen, Nebeln, Sternhaufen und anderen Objekten zusammengesetzt ist. Ferner sind viele Sternhaufen in der Großen Magellanschen Wolke schon im kleinen Teleskop sichtbar, von denen einige zur Klasse der blauen Kugelsternhaufen gehören, einer Objektklasse, die es in der Milchstraße nicht gibt. Den Bewohnern der Südhalbkugel waren die beiden Galaxien wohl schon seit prähistorischer Zeit durch Beobachtungen mit dem bloßen Auge bekannt, erstmalige schriftliche Erwähnung fanden sie jedoch erst durch den persischen Astronomen Al Sufi in seinem Buch der Fixsterne im Jahr 964. Der erste Europäer, der die beiden Wolken beschrieb, war Ferdinand Magellan bei seiner Weltumsegelung 1519. Nach der Milchstraße, dem Andromedanebel und dem Dreiecksnebel ist die GMW die viertgrößte Galaxie der Lokalen Gruppe. Weil ihr größerer Anteil im Sternbild Dorado liegt, ist sie in der entsprechenden Sternbildbeschreibung in der POLARIS 102 etwas ausführlicher beschrieben. Im südlichen Teil der GMW gibt es leider nur wenige wirklich erwähnenswerte Objekte.

NGC 1711 ist die Bezeichnung eines visuell 10m0 hellen offenen Sternhaufens im südlichen Teil der Großen Magellanschen Wolke, der ins Sternbild Tafelberg hineinragt. Der Sternhaufen wurde 1826 von James Dunlop mit einem 23-cm-Teleskop entdeckt. Wir finden ihn auf der Position RA 04h50m36s / Dec -89°58´60“. Die HAST-Aufnahme zeigt eine hohe Konzentration, die schon fast einen lockeren Kugelsternhaufen vermuten lässt.

Bild 05: NGC 1711 – offener Sternhaufen im Mensa-Teil der GMW

NGC 1943, ein offener Sternhaufen, steht auf der Sternbildgrenze zum Dorado in RA auf 5h22m28,7s und in Dec auf -69°20´07“. Er ist mit 11m9 nur noch für größere Amateurteleskope zugänglich, zeigt darin aber eine zunehmende Sternkonzentration zur Haufenmitte. Entdeckt wurde er 1826 mit einem 23 cm-Teleskop von James Dunlop, einem dänischen Astronomen.

Bild 06: NGC 1943 in der GMW an der Sternbildgrenze Dorado/Mensa – Foto HAST

NGC 2010 ist ein mit 11m7 leuchtender offener Sternhaufen in dem südlichen Teil der Großen Magellanschen Wolke, der in das Sternbild Mensa hineinreicht. Er befindet sich dort auf der Position RA 05h30m35s / Dec -70°49,2´ und hat eine Winkelausdehnung von 2 Bogenminuten. Er wurde am 12. November 1826 von John Herschel entdeckt.

https://upload.wikimedia.org/wikipedia/commons/f/f3/NGC_2010_HST_9891_71_R814_G_B555.png
Bild 07: NGC 2010 offener Sternhaufen im Mensa-Teil der GMW

NGC 1987 ist ein lockerer Kugelsternhaufen in der Großen Magellanschen Wolke. Mit den Koordinaten RA 05h27m17,2s / Dec -70°41´15“ steht er mit 12m1visueller Helligkeit im Sternbild Tafelberg. Der Sternhaufen wurde 1834 von dem Astronomen John Herschel mit einem 48-cm-Teleskop entdeckt. Die Entdeckung wurde später im New General Catalogue verzeichnet.

Bild 08: NGC 1987 lockerer Kugelsternhaufen im Mensa-Teil der GMW

NGC 2018 ist ein Supernovarest in den südlichen Regionen der Großen Magellanschen Wolke. Seine Entfernung ist mit 163.000 Lichtjahren angegeben. In einer Verdichtung / Globule, hervorgerufen durch Kollision der auseinander driftenden Gase mit dem interstellaren Medium, entstehen bereits wieder neue Sterne.

Bild 09: NGC 2018 SN-Rest in der GMW – Foto 3,9 m-AAT am Australian Astronomical Observatory

NGC 2199 ist eine Spiralgalaxie in Schrägstellung auf der Position RA 06h04m44,9s / Dec -73°24´59“ und damit nahe dem westlichen Rand der  Großen Magellanschen Wolke und der Grenze zum Dorado. Ihr Licht erreicht uns erst nach 207,7 Millionen Jahren.

Bild 10: NGC 2199 – Spiralgalaxie in Mensa

6 Sonstiges

Bild 11: Uranometria 1603: „Southern Birds, Indus, and Hydrus“

Literaturhinweise:

  • Peripedia                                                                           diverse Autoren
  • Sternbilder von A – Z                                                 A. Rükl
  • Buch der Sterne                                                            Guiness
  • Wikipedia                                                                         div. Autoren
  • Astronomie.de                                                               div. Autoren
  • Schlüsseldaten der Astronomie                          Harenberg
  • Lexikon der Astronomie Bd. 1 und 2                div. Autoren
  • POLARIS 102                                                                 E.-G. Bröckels

Quellenangaben der Abbildungen:

  • Bild 01: Auszug aus Sternbilder von A – Z    A. Rükl
  • Bild 02: Wikimedia Commons, the free media repository, NASA/ESA HST
  • Bild 03: cgs.obs.carnegiescience.edu/CGS/object_html_pages/NGC1511.html
  • Bild 04: Tafelberg (links) und Lion´s Head von Milnerton aus                 Creativ-Commons-Lizenz „Namensnennung 3.0 nicht portiert“ Pavel Spindler
  • Bild 05: HAST Fabian RRRR from Wikimedia Commons, the free media repository
  • Bild 06: Auszug aus Wikimedia Commons, NGC 1943, the free media repository
  • Bild 07: NASA/ESA HST,  Fabian RR
  • Bild 08: Auszug aus: HST, Hubble Legacy Archive/PropID10595, gemeinfrei
  • Bild 09: Foto 3,9 m-AAT am Australian Astronomical Observatory
  • Bild 10: DSS Donald Pelletier Creative Commons Attribution Share Alike 4.0 int. license
  • Bild 11: Auszug aus Uranometria von Johann Bayer, 1603

Die Serie der Sternbildbeschreibungen wird fortgesetzt.