Archiv der Kategorie: Serien

Das Sternbild Eridanus

Herkunft, Mythologie, Beobachtungshinweise

zusammenstellt von E.-Günter Bröckels

1 Der Name

Das Sternbild Eridanus gehört zu den ältesten Sternbildern und findet sich auch unter den 48 Sternbildern, die schon von Ptolemäus beschrieben wurden, wieder. Selbst aus der Sicht der damaligen Welt, ihre Länder befanden sich alle im Mittelmeerraum und somit näher am Äquator, stand dieses Sternbild nicht vollständig über dem Horizont. Es war seinerzeit eines der ausgedehntesten Sternbilder und steht auch heute noch flächenmäßig an sechster Stelle. Die heutige Schreibweise ist lateinisch, während sie im Griechischen Eridanos, also mit o lautete.

1.1 Mythologisches

In der griechischen Mythologie war der Eridanos ein großer Fluss am Ende der Welt. Wie alle mythologischen Quellen, Flüsse und Seen entstammt auch der Eridanos dem die Erde umfließenden Weltstrom Okeanós, dem ältesten Sohn des Uranos und der Erdmutter Gaia und Bruder und Gemahl seiner Schwester Tethys. Über letztere ist Okeanós Vater der Okeaniden. Phaethon, Sohn des Sonnengottes Helios und der Okeanide Klymene, lenkte einmal den Himmelswagen seines Vaters, auf dem die Sonne über das Firmament gefahren wurde, als Erfüllung eines Wunsches, den Helios seinem Sohn als Beweis seiner Vaterschaft gewährte. Trotz ernsthafter Bedenken und Warnungen bestand Phaethon auf dieser Fahrt. Er verlor jedoch recht bald die Kontrolle über die Rosse, kam dabei der Erde gefährlich nahe, verbrannte große Teile von Afrika und färbte somit die Haut der dort lebenden Menschen dunkel. Überstürzt lenkte er die Rosse nun gen Himmel und entzündete das Universum. Dabei ist die Milchstraße als feurige Spur entstanden. Bevor der Sonnenwagen den Olymp erreichte, sandte Zeus einen Blitzstrahl aus, der die Pferde stoppte und Phaethon aus dem Sonnenwagen schleuderte. Phaethon stürzte in den Eridanos, an dessen Ufer seine Schwestern, die Heliaden, seinen Tod beweinten. Letztere wurden in Schwarzpappeln verwandelt und ihre Tränen in Bernsteine.

Das Sternbild Eridanus sollte ursprünglich den Weg darstellen, den der himmlische Sonnenwagen während dieser Fahrt nahm. Später sah man darin den Fluss, in den der tote Phaethon stürzte.

Apollonios von Rhodos beschreibt nur sehr unklar, ob der Eridanos ein Fluss, ein Strom oder Meeresarm oder eher ein See ist. Seit Phaetons Sturz sollen dort immer noch Dämpfe aus dem Wasser steigen. Vögel, die den Ort überfliegen, würden inmitten des Sees in Flammen aufgehen. Es sei eine traurige Gegend, erfüllt von Dünsten und Brandgestank und in der Nacht höre man die schrillen Trauerschreie der Heliaden. Die Bernsteine, die man dort finde, seien den Kelten zufolge die versteinerten Tränen Apollons, der sich dort aufhielt, als er aus dem Olymp exiliert war. Der Eridanos mündet Apollonios zufolge in den Okeanos, in das Ionische Meer und mit sieben Mündungen in das Tyrrhenische Meer, eine ziemlich wirre Geographie.

Hesiod, ein griechischer Dichter, der um 700 v. Chr. als Ackerbauer und Viehhalter lebte, führt in seiner „Theogonie“ die Flüsse Eridanos und Nil getrennt auf, also als zwei voneinander verschiedene Gewässer.

Der Grieche Eratosthenes (um 240 v. Chr.) wiederum setzte den Eridanos mit dem Nil gleich, dem einzigen damals bekannten Fluss, der von Süden nach Norden fließt. Dies steht allerdings im Widerspruch mit der Bezeichnung für den damals südlichsten Stern Acamar für „Ende des Flusses“. Als Quelle müsste er wohl „Anfang des Flusses“ geheißen haben.

Publius Vergilius Maro (70 bis 19 v.Chr.), besser bekannt als Vergil, war ein lateinischer Dichter, der den Eridanus den „König der Flüsse“ nannte.

Anfänglich endete das Sternbild Eridanus bereits am Stern Acamar (θ Eridani), dem hellen Stern unter Fornax. Der Name leitet sich aus dem Altarabischen ab und bedeutet „das Ende des Flusses“. Denn vor etwa 3.500 Jahren lag Eridanus auf Grund der Präzession, das ist die Auswirkung der Taumelbewegung der Erdachse, noch 10 Grad südlicher als heute. Acamar kam auf der Insel Kreta gerade so auf bzw. über den Horizont. Der Name des heute südlichsten Sterns, Achernar, bedeutet ebenso „das Ende des Flusses“ oder „Flussmündung“. Somit dürfte der Eridanus schon von weitreisenden Völkern Kleinasiens in der Spätantike verlängert worden sein. Achernar lag damals auf minus 76° Deklination und konnte selbst in Ägypten nicht beobachtet werden.

Achernar wandert in den nächsten Jahrtausenden weiter Richtung Norden. In 500 Jahren wird er auf Kreta den Horizont erreichen, und von ca. 7.900 n. Chr. bis 10.500 n. Chr. sogar in Deutschland sichtbar werden. Danach wandert Achernar wieder Richtung Süden. Am nächsten am Südpol stand Achernar 3.360 v. Chr., damals auf minus 83° Deklination.

In der ägyptischen Mythologie ist der Himmelsfluss Eridanus die Grenze zwischen dem Reich der Lebenden und der Duat, der ägyptischen Totenwelt. Er wurde auch ‘Strom des Lebens’ genannt. Der schakalköpfige Totengott Anubis unterstützte die Toten beim Überqueren des Eridanus. Der Eridanus entspringt am unteren Rand des Orion, dem Sternbild des Osiris.

Es gibt arabische Darstellungen von Achernar und Fomalhaut als ein Paar Strauße.

Der niederländische Seefahrer Pieter Dirkszoon Keyser, der nach 1595 zwölf „neue“ Sternbilder von seiner Südfahrt mitbrachte, benannte ihn auf „Den Nyli“ um, vermutlich als einen der vier Paradiesflüsse, in der Tradition des Eratosthenes, der den Eridanus als den ägyptischen Strom Nil gedeutet hatte. Dabei hatte schon Hesiod, wie oben erwähnt, diese zwei Flüsse eigenständig und getrennt abgehandelt. Als Nil findet sich der Eridanus auch bei Plancius und den von Jodocus Hondius gedruckten Himmelskarten. Johann Bayer verzeichnet ihn 1603 aber wieder als Eridanus in ptolemäischer Tradition.

1.2 Fluss während des Paläogens

Im Internet habe ich eine Abhandlung über den hypothetischen Fluss Eridanus gefunden, die ich hier in Wort und Bild mit Einzelnachweisen wiedergeben möchte; ist es doch interessant zu wissen, dass die heutige Ostsee mit dem Namen Eridanus in Verbindung steht.

Zitat:

https://de.wikipedia.org/wiki/Eridanus_(Geologie)

Der Eridanus (auch Eridanos) ist ein hypothetischer Fluss, der im Gebiet der heutigen Ostsee im Mittleren Eozän vor etwa 40 Millionen Jahren entstanden ist. Der Fluss verschwand im Pleistozän.

1.2.1 Namensherkunft

Der Name geht auf den Fluss Eridanus in der griechischen Mythologie zurück. Als „hypothetischer Fluss“ wird der Eridanus bezeichnet, weil geologische Befunde (z. B. Sedimente, die auf Ablagerungen in einem Delta deuten) die Existenz eines solchen Flusses nahelegen, ein direkter Nachweis (z. B. ein Erosionstal) aber nicht vorliegt.

1.2.2 Im Eozän

Der Eridanus entwässerte im Eozän Gebiete eines Subkontinents, der Teile des heutigen Skandinaviens und Russlands bis etwa zum Ural umfasste. Auf diesem Subkontinent wuchs während eines Zeitraums von 10 bis 20 Millionen Jahre der so genannte „Bernsteinwald“, der das Harz für den Baltischen Bernstein lieferte. Südlich dieses Gebietes befand sich ein Randmeer des Atlantischen Ozeans. Während des Priabonium (im Oberen Eozän) mündete dieser Fluss in einem ausgedehnten, mindestens 115 km breiten Delta (Chłapowo-Samland-Delta) ungefähr in dem Gebiet, in dem sich heute die Danziger Bucht (Ostsee) befindet. Aus den Sedimenten, die der Eridanus in seinem Delta ablagerte, entstand unter anderem die so genannte Blaue Erde, in der sich der weitaus größte Teil der Vorkommen des Baltischen Bernsteins befindet.[1] Es wird allerdings auch die These vertreten, dass die Bernsteinlagerstätten in diesem Gebiet in erster Linie durch Meerestransgression und nicht oder nur zu einem geringen Teil durch Flusstransport zu erklären sind.[2]

1.2.3 Im Pleistozän

Im Unteren Pleistozän, vor etwa 2 Millionen Jahren, erreicht der Fluss eine Länge von etwa 2.700 Kilometern, war also ähnlich lang wie die heutige Donau. Er entsprang in Lappland, floss durch das Gebiet des heutigen Bottnischen Meerbusens, weiter durch das Gebiet, in dem sich heute die Ostsee erstreckt, nach Westeuropa, wo er in einem Delta mündete, dessen Ausmaße mit denen des heutigen Amazonas oder des Mississippis verglichen wird. Geschiebefunde in den Niederlanden und Untersuchungen an Sedimenten aus dem Untergrund der Nordsee trugen dazu bei, die Hauptzuflüsse des Eridanus rekonstruieren zu können, der in der Cromer-Warmzeit (vor etwa 700.000 Jahren) versiegte.

1.2.4 Beziehung zwischen Eridanus und Baltischem Urstrom

Es wird in der Literatur auch die Auffassung vertreten, dass nur das Entwässerungssystem im Eozän, in dem der Baltische Bernstein in das Gebiet der heutigen Danziger Bucht transportiert wurde, korrekt mit dem von Barbara Kosmowska-Ceranowicz[1] eingeführten Begriff „Eridanus“ zu bezeichnen ist. Spätere Entwässerungssysteme im Gebiet der heutigen Ostsee in der Zeit des Miozän bis zum Pleistozän seien unabhängig hiervon entstanden und zutreffend als „Baltischer Urstrom“ oder „Baltischer Hauptstrom“ zu bezeichnen.[3]

Einzelnachweise
  1. B. Kosmowska-Ceranowicz: Bernstein – Die Lagerstätte und ihre Entstehung. In: Bernstein – Tränen der Götter. S. 165, Bochum 1996. ISBN 3-921533-57-0.
  2. Gerda Standke: Bitterfelder Bernstein gleich Baltischer Bernstein? – Eine geologische Raum- Zeit- Betrachtung und genetische Schlussfolgerungen. – In Exurs.f. und Veröfftl. DGG, 236: S. 11-33, Hannover, 2008.
  3. Meyer & Bartholomäus: Baltischer Urstrom und der Eridanos – eine Klarstellung. In: Geschiebekunde aktuell 29 (2): 57-58, Hamburg, Greifswald 2013.

Abb. 01: Rekonstruktion des Laufs des hypothetischen Flusses Eridanus im Pleistozän

Zitatende

2 Das Sternbild

Nach diesem Ausflug in die moderne Geowissenschaft kommen wir zu unserem Sternbild Eridanus zurück. Es sollte schon in der POLARIS 105 erscheinen, ist aber seinerzeit leider verloren gegangen. Hier ist die zwischenzeitlich überarbeitete Version.

Eridanus     Genitiv: Eridani     Abk.: Eri     dt.: Eridanus

Er zieht sich als Kette von Sternen beginnend über dem rechten Fußstern des Orion Rigel bis nahe an den südlichen Himmelpol hinab. Das Sternbild ist nicht sehr auffällig, da nur vier Sterne heller als die 3. Größenklasse sind. Von Mitteleuropa aus ist nur der nördliche Teil sichtbar. Als sechstgrößtes Sternbild mit einem Flächeninhalt von 1138 Quadratgrad (deg²) erstreckt es sich in Rektaszension von1h 24m 49s bis 5h 11m 13s und in Deklination von −57° 54′ 58″ bis +0° 24′ 13″. Wegen seiner südlichen Lage ist es erst ab 32° Nord vollständig zu sehen und bei 89° Süd verschwinden erst die nördlichsten Sterne. Für uns Nordeuropäer sind nur die nördlichsten Bereiche in den Wintermonaten etwa zeitgleich südlich mit dem Sternbild Taurus / Stier zu sehen. Beginnend mit dem Stern τ1Eridani zieht der Eridanus am 23. November um 22 Uhr für uns durch den Meridian und beendet seine Passage mit dem Stern b Eridani am 08. Januar. Bei absolut klarer Horizontsicht sind dann die Sterne υ1 und υ2 Theemin gerade auf der Horizontlinie in SSW sichtbar. Der Rest mit den Sternen  Acamar & Co bleibt für uns, wie schon oben erwähnt, von Nordeuropa aus unsichtbar.

Abb. 02: Sternbild Eridanus

Der Eridanus grenzt an neun Nachbarsternbilder. Dies sind von Norden im Uhrzeigersinn Taurus, Cetus, Fornax, Phoenix, Hydrus, Horologium, Caelum, Lepus und Orion.

2.1 Die Sterne

α Eri mit Namen Achernar oder Flussmündung steht fast an der südlichen Grenze zum Sternbild Kleine Wasserschlange; Hydrus und steht auf der Position RA 01h37m43s  / Dec  -57°14´12“ so weit südlich, dass er von Europa aus nicht zu sehen ist. Er ist mit 0m45 einer der zehn hellsten Sterne am Himmel, der hellste Stern im Sternbild und gehört der Spektralklasse B3 V an. Beobachtungen mit dem VLT-Interferometer zeigten 2003, dass er bei einem 6,3-fachen Sonnenradius mit mindestens 230 km/s entsprechend 1Std 24 Min / U rotiert und hierdurch im Verhältnis 2:1 abgeplattet ist. Sein Licht kommt von einer 18.700 K heißen Sternoberfläche und braucht bis zu uns 144 Jahre.

Nach diesem Stern sind der Mount Achernar und die Achernar-Insel in der Antarktis benannt.

β Eri hat den Eigennamen Cursa abgeleitet von Al Kursiyy al Jauzah  „die Fußbank des mittleren Einen”. Mit 2m79 ist er der zweithellste Stern mit einer Oberflächentemperatur von 8.360 K. Sein Licht verrät einen AIIIvar-Stern und braucht nur 89 Jahre bis zu uns. Seine Position, RA 05h07m51s / Dec .05°05´11“, markiert die nordöstlichste Ecke des Sternbildareals. Er steht etwas nördlich des Sterns Rigel.

Al Kursiyy al Jauzah war ursprünglich der Name einer Sternenkonstellation, bestehend aus β, λ und ψ Eridani und τ Orionis. In einem NASA-Katalog der Sterne sind hierfür jedoch nur β, λ und ψ Eridani aufgeführt. Im Chinesischen wird die 4er Konstellation Yù Jǐng, “die Jade Well” genannt. β Eridani selbst ist bekannt als “der dritte Stern von Jade Well” Yù Jǐng sān.

γ Eri ist 2m95 hell, trägt den arabischen Eigennamen Zaurac, was „Boot“ bedeutet und ist etwa 210 Lichtjahre von uns entfernt. Seine Position  ist RA 03m58m02s / Dec -13°30´31“ und sein orangerotes Licht verrät einen Spektraltypen M1 IIIb Ca mit starken Calciumlinien. In alten Aufzeichnungen ist es das Fährschiff, welches die Seelen der Toten über den Fluss Eridanus bringt.

δ Eri gehört der Spektralklasse K0 IV an, besitzt eine scheinbare Helligkeit von 3m5 und ist ca. 30 Lichtjahre von der Sonne entfernt. Der Stern trägt die historischen Eigennamen Rana für „Frosch“ sowie Theemini. Delta Eridani ist ein Unterriese, der sich im Übergang vom Wasserstoff-Brennen zur Helium-Fusion befindet. Sein Alter  wird auf rd. 8 Milliarden Jahre geschätzt. Wir finden Delta Eridani auf der Position RA 03h43m15s / Dec -09°45´48“, wo er bei 2 ½-fachem Sonnendurchmesser eine Rotationsdauer von 116 Tagen zeigt.

ε Eri ist mit 10,7 Lichtjahren Entfernung einer der nächsten Nachbarn unserer Sonne. Er leuchtet mit 3m72 als K2 V-Stern in orange von einer etwa 5.100 K heißen Sternoberfläche von der Position RA 03h32m56s / Dec -09°27´30“. Epsilon Eridani ist nur 4/5 so groß wie unsere Sonne, dreht sich in 12 Tagen einmal um sich selbst und hat, wie 1998 entdeckt wurde, eine Staubscheibe, aus der sich Planeten entwickeln. Ein erster Planet wurde im Jahr 2000 nachgewiesen und Epsilon Eridani b benannt. Beobachtungen des Hubble-Weltraumteleskops bestätigten Anfang Oktober 2006 die Existenz des Exoplaneten.

Arabische Siedler entlang der Ostküste Afrikas bedachten den Stern vor fast 700 Jahren gelegentlich mit dem Namen Aṣ-Ṣādira: „die zurückkehrenden Strauße“. Nach einem öffentlich ausgeschriebenen Wettbewerb der IAU erhielt er im Dezember 2015 den Namen „Ran.

ζ Eri hat den Eigennamen Zibal, ist etwa 110 Lichtjahre entfernt, 4m8 hell und 5.100 K heiß.  Zeta Eridani gehört der Spektralklasse A5m an und besitzt eine scheinbare Helligkeit von 4,8 mag. Der Stern steht auf der Position RA 03h15m50s / Dec -08°49´11“. Hier haben wir einen spektroskopischen Doppelstern mit einer Umlaufzeit von 17 Tagen und 21 Stunden. Der Hauptstern ist spektral ein A9m-Typ. Das System weist einen signifikanten Infrarot-Überschuss bei 70µm auf, was auf einen Asteroidengürtel im Abstand von 31 AU hindeutet.

η Eri mit dem arabischen Eigennamen Azha für Brutplatz ist ein 3m9 heller, orange leuchtender K1 III-Stern, der je nach Quelle in 121 bzw. 137 Lichtjahren Entfernung steht. Wir finden ihn noch gut über dem Horizont in der Nähe der Sternbildgrenze zum Cetus auf der Position RA 02h56m26s und Dec -08°53´53“.

θ Eri trägt den Eigennamen Acamar und markierte in der Frühzeit das Ende des Flusses Eridanus (siehe oben). Acamar ist ein Doppelstern in 160 Lichtjahren Entfernung, der bereits mit einem kleineren Teleskop getrennt werden kann. Zwei Sterne der Helligkeiten 3m3 und 4m4 umkreisen sich in 8,2“ Abstand. Die Sterne gehören den Spektralklassen A1 und A4 an und leuchten somit weiß von rund 10.000 K heißen Sternoberflächen.

ο Eri heißt auch Beid und ist ein 4m1 heller, gelb leuchtender Stern der Spektralklasse F2 III mit 7.500 K Oberflächentemperatur. Sein Licht überbrückt die Distanz zu uns in 200 Jahren.

ο2 Eri hat den Eigennamen Keid und ist ein Dreifachsystem in nur 15,9 Lichtjahren Entfernung. Der Hauptstern ist mit 4m5  etwa so groß wie unsere Sonne und ein K1-Typ. Eine der Komponenten ist ein weißer Zwergstern der Spektralklasse A2 mit etwa 10.000 K Oberflächentemperatur, der nur den doppelten Erddurchmesser besitzt und nur 9m7  hell ist. Dieser Stern ist wegen der geringen Entfernung der am einfachsten zu beobachtende weiße Zwerg, denn er wird bereits in einem Amateurteleskop sichtbar. Er begleitet den Hauptstern in 83“ Abstand. In einem größeren Teleskop wird auch die dritte Komponente, ein roter Zwergstern mit 10m8, sichtbar.

υ2 Eri wird auch Theemin oder Beemin genannt. Ypsilon2 Eridani steht an der Grenze zum Sternbild Caelum und scheint von dort mit 3m8 über eine Entfernung von 200 Lichtjahren. Er gehört der Spektralklasse G9 III an, leuchtet gelblich von einer etwa 5.000 K heißen Oberfläche und seine Koordinaten sind RA 04h33m40s und Dec -30°40´0“.

τ2 Eri trägt den arabischen Eigennamen Angetenar, aus ḥināyat und nahr, und bedeutet „Biegung des Flusses“. Angetenar gehört der Spektralklasse K0 III an und besitzt eine scheinbare Helligkeit von 4m7. Er befindet sich in einer Entfernung von ca. 187 Lichtjahren.

2.2 Deep Sky Objekte

Im Areal des Sternbildes Eridanus gibt es zahlreiche Galaxien, die zusammen den Eridanus-Galaxienhaufen bilden. Einige helle, von uns aus sichtbare Galaxien möchte ich nachfolgend vorstellen. Auf den dazugehörigen Aufnahmen sind viele dieser Haufengalaxien im Hintergrund zu sehen.

NGC 1132 ist eine seltene elliptische Riesengalaxie und liegt in rund 320 Millionen Lichtjahren Entfernung auf der Position RA 02h52m52s und Dec -01°16´29“. Sie bleibt damit für uns noch über dem Horizont und ist mit einer Flächenhelligkeit von 13m6 bei einer Ausdehnung von 2,5´x 1,3´ schon in mittleren Teleskopen sichtbar. Diese Galaxie wurde am 23. November 1827 von John Frederick William Herschel, Sohn des deutsch-britischen Astronomen Wilhelm Herschel, entdeckt. Auf einem Hubble-Bild (siehe nachstehend), das aus Beobachtungen in den Jahren 2005 und 2006 entstand, sind rund um NGC 1132 zahlreiche alte Kugelsternhaufen zu sehen, die vermutlich früher zu den zahlreichen normalen Galaxien gehörten, die in NGC 1132 durch Verschmelzung aufgegangen sind. NGC 1132 befindet sich in einem gewaltigen Halo aus Dunkler Materie. Eine ähnliche Ansammlung von Dunkler Materie findet man sonst nur in großen Galaxiengruppen mit bis zu 100 Mitgliedern. Die Riesengalaxie weist eine starke Röntgenstrahlung auf, die auf heißes Gas zurückzuführen ist. Auch dieses heiße Gas findet man in der Regel nur in großen Galaxiengruppen. Das Röntgenleuchten von NGC 1132 hat eine enorme Intensität und erstreckt sich über einen Bereich, der etwa zehnmal größer ist als die Ausdehnung der Galaxie  selbst. NGC 1132 hat einen Radius von 120.000 Lichtjahren und wir sehen heute den Zustand, wie er vor 320 Millionen Jahren war.

Abb. 03: NGC 1132 (HST)

NGC 1232 ist eine Balkenspiralgalaxie vom Hubble-Typ SAB(rs)c. Wir finden sie östlich des Sterns Angetenar = τ2 Eridani auf der Position RA 03h09m45s / Dec -20°34´45“. Sie hat eine Helligkeit von 9,8 mag und eine Winkelausdehnung von 7,4′ × 6,5′. Die Galaxie ist rund 100 Millionen Lichtjahre vom Sonnensystem entfernt und hat einen Durchmesser von etwa 200.000 Lichtjahren. Mit ihrem scheinbaren Begleiter PGC 11834, auch als NGC 1232A bezeichnet, bildet NGC 1232 das Objekt Arp 41. NGC 1232A ist vom Hubble-Typ SBm, hat eine visuelle Helligkeit von 14m7 bei einer Winkelausdehnung von 0,9´ x 0,7´. Ihre Entfernung wird mit 93 Megaparsec angegeben. Gérard de Vaucouleurs entdeckte 1982 die vierfache Rotverschiebung gegenüber NGC 1232, was bedeutet, dass NGC 1232A ein Satellit von NGC 1232 ist. Halton Arp diskutiert dieses Problem im Jahr 1982 mit G. de Vaucouleurs, und entdeckt, dass NGC 1232A in Wechselwirkung mit NGC 1232 steht und dass  die Asymmetrien in NGC 1232 das Ergebnis dieser Interaktion darstellen. G. de Vaucouleurs schlug in einem Gespräch mit Arp vor, dass NGC 1232A entfernter ist als NGC 1232 mit folgenden Argumenten: Die Helligkeit und auch der Durchmesser von NGC 1232A würden zeigen, dass die Galaxie tiefer im Raum stehe. Wenn NGC 1232A die gleiche Entfernung wie NGC 1232 hätte, wäre sie weniger brillant als für die Art der Galaxie erwartet.

Halton Arp hielt dagegen: Große Galaxien haben in der Regel solche Begleiter. Galaxien wie NGC 1232A sind bekannt für ihre geringere Brillanz, für Anomalien und ihre geringere Helligkeit und in der Regel nicht im Universum isoliert, sondern ein Begleiter größerer Galaxien. Eine ähnliche Situation gilt für NGC 1232B, eine Begleitspiralgalaxie von NGC 1232, mit einer Rotverschiebung von etwa 28.000 km / s.

Detaillierte Beobachtungen neueren Datums lassen auf das Vorhandensein von dunkler Materie in bedeutendem Ausmaß schließen. Die große Galaxie wurde am 20. Oktober 1784 von Wilhelm Herschel entdeckt.

Abb. 04: NGC 1232 mit Satellitengalaxie NGC 1232A (VLT)

NGC 1291 = NGC 1269 erscheint auf den ersten Blick als Ringgalaxie. Sie ist aber eine Balkenspiralgalaxie vom Typ SBa in 33 Millionen Lichtjahren Entfernung. Die Galaxienklasse, die einen Balken quer durch die Zentralregion aufweist, wurde zuerst von H. D. Curtis erkannt und mit der Bezeichnung Balkenspiralgalaxie belegt. NGC 1291 hat eine Ausdehnung von 9,8′ × 8,3′ und besitzt eine scheinbare Helligkeit von 8m5 und eine Flächenhelligkeit von 13m4 pro Quadratgrad. Sie ist damit die hellste Galaxie im Eridanus. Wir Nordeuropäer finden sie gerade noch auf der Position RA 03h17m18s und in Dec -41°06´57“ östlich vom Stern Acamar. NGC 1291 wurde 1826 von James Dunlop entdeckt und als Dun 487 katalogisiert. 1836 beschrieb John Herschel das Objekt erneut. Als schließlich Johan Ludvig Emil Dreyer den 1888 veröffentlichten New General Catalogue erstellte, erkannte er diese Doppelbeobachtung nicht und vergab die Nummern NGC 1291 für Dunlops und NGC 1269 für Herschels Nebelbeschreibung.

Abb. 05: NGC 1291 (J. Pöpsel, Capella Observatory)

NGC 1300 ist eine schön ausgeprägte Balkenspiralgalaxie nordöstlich der Galaxie NGC 1232. Sie hat einen Durchmesser von etwa 115.000 Lichtjahren und befindet sich in einer Entfernung von 21 Megaparsec, das sind rund 70 Millionen Lichtjahre, auf der Position RA 03h19m41s / Dec -19°24´40“. Die Galaxie hat eine visuelle Helligkeit von 10m3, eine Flächenhelligkeit von 13m7 und eine Winkelausdehnung von 6,0′ × 3,3′. Das Zentrum der Galaxie weist zusätzlich eine interessante Spiralstruktur mit einem Durchmesser von ca. einem Kiloparsec auf. Die Galaxie NGC 1300 wurde am 11. Dezember 1835 von dem britischen Astronomen John Herschel entdeckt und ist Mitglied des Eridanus-Galaxienhaufens.

Abb. 06: NGC 1300 (HST)

NGC 1531 ist eine elliptische Galaxie vom Hubble-Typ E/S0? pec, steht etwa 5 Millionen Lichtjahre hinter NGC 1532 und hat bei einer Winkelausdehnung von 1,38´ x 0,95´ einen realen Durchmesser von etwa 20.000 Lichtjahren. Auf diese Fläche verteilt sich ihre Helligkeit von 11m9. Die Galaxie NGC 1531 wurde erst mit verbesserter Teleskopoptik am 19. Oktober 1835 von John Herschel von NGC 1532 getrennt und somit als eigenständig entdeckt. Neuere Forschungen haben ergeben, dass sie mit der wesentlich größeren Galaxie NGC 1532 sogar über den riesigen gegenseitigen Abstand (s. o.) in gravitativer Wechselbeziehung steht.

NGC 1532 ist eine Spiralgalaxie vom Hubble-Typ SB(s)b pec, hat eine visuelle Helligkeit von 9m8 und eine Flächenhelligkeit von 13m6 bei einer Winkelausdehnung von 12,6′ × 3,3′. Sie ist rund 50 Millionen Lichtjahre vom Sonnensystem entfernt auf der Position RA 04h12m04s / Dec -32°52´27“ und hat einen Durchmesser von etwa 180.000 Lichtjahren.
Das Objekt steht mit der wesentlich kleineren linsenförmigen NGC 1531 in gravitativem Kontakt, was im untenstehenden Bild sehr schön an den Verformungen und Sternentstehungsgebieten erkennbar ist. NGC 1531 wird in ferner Zukunft mit NGC 1532 verschmelzen. Die große Galaxie wurde am 29. Oktober 1826 von dem schottischen Astronomen James Dunlop entdeckt.

Abb. 07: NGC1531 klein und  NGC 1532 groß und verformt (VLT)

NGC 1535 ist ein planetarischer Nebel in 5.000 bis 6.000 Lichtjahren Entfernung auf der Position RA 04h14m16s und Dec -12°44´22. NGC 1535 ist der hellste planetarischen Nebel im Sternbild Eridanus. Wir finden ihn östlich des Sterns Zaurac. Er wurde am 1. Februar 1785 von Wilhelm Herschel entdeckt. Die Helligkeit von NGC 1535 mit 9m6 auf einer Fläche von 0,74´ x 0,7´ reicht zwar für eine Beobachtung in einem kleinen Teleskop ab ca. 70 mm Öffnung aus, dort wird man allerdings nur ein schwaches, stellares Objekt vorfinden. In einem größeren Teleskop ab ca. 6 Zoll Öffnung ist NGC 1535 bereits sehr auffällig. Der 12-mag-Zentralstern mit der Katalogbezeichnung HD 26847 (BD -13° 842) ist aber selbst mit 10 Zoll Öffnung etwas schwierig zu beobachten. Eine erfolgreiche Beobachtung setzt ein entsprechend gutes Seeing voraus. Erst in noch größeren Teleskopen werden Strukturen darin sichtbar, die zur Benennung „Cleopatras Auge“ führten. Diesem planetarischen Nebel wird eine gewisse Ähnlichkeit mit NGC 2392, dem Eskimonebel im Sternbild Zwillinge, nachgesagt.

Abb. 08: NGC 1535 (A. Block, Mount Lemmon Observatory)

Im Jahr 2007 wurden bei Untersuchungen von 93 Quasaren auch als »Voids« bekannte Regionen mit etwa 15% niedrigerer Dichte an Objekten und dunkler Materie entdeckt, die für gewöhnlich etwa 100 Millionen Lichtjahre durchmessen und damit um eine ganze Größenordnung kleiner sind als die jetzt aufgespürte riesige Struktur. Im Jahre 2014 wurde im Sternbild Eridanus nämlich ein Novum entdeckt, welches als „Eridanus Supervoid“ bekannt wurde. In einer Region, welche etwa eine Milliarde Lichtjahre Ausdehnung hat, gibt es so gut wie keinerlei Sterne, keine Galaxien, keine schwarzen Löcher und auch keine Indizien für dunkle Materie. Deshalb benannten deren Entdecker, István Szapudi und seine Kollegen von der Universität Hawaii, dieses Gebilde auch Supervoid. Für ihre Untersuchung nutzten sie Daten des Pan-STARRS1-Teleskops auf Maui, Hawaii, sowie des Orbital-Teleskops WISE, des Wide Field Survey Explorers, um eine dreidimensionale Karte der Galaxienverteilung in der Region um den Cold Spot, den Kalten Fleck, zu erstellen.

2.3 Sonstiges

Literaturhinweise:

  • Internet Wikipedia, the free media repository
  • Lexikon der griech. und röm. Mythologie                 Hunger, Herbert
  • Sternbilder von A bis Z                                                        Rükl, A.
  • Wikipedia Enzyklopädie                                                    div. Autoren
  • Die großen Sternbilder                                                       Ridpath, Ian

Quellenangaben der Abbildungen

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Oktans – Oktant

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels    

1 Der Name

Der Oktant ist ein nautisches Gerät zur Messung von Winkeln. Sein Name bezieht sich auf den Umfang der angebrachten Skala von 45° (lat. octans = achter Teil/einem Achtel-Kreis). Der Messumfang beträgt aber wegen der Spiegelung im Strahlengang das Doppelte (nämlich 90°). Entsprechend ist die Skala eingeteilt. Über zwei Spiegel, von denen einer beweglich ist, können die Bilder zweier Objekte nebeneinander platziert und so der Abstand zwischen den beiden bestimmt werden. In der Seefahrt konnte auf diese Art und Weise in Verbindung mit einer präzisen Uhr die Höhe der Sonne zur Mittagszeit bestimmt werden; daraus lässt sich der Breitengrad ermitteln, auf dem man sich befindet. Solche Spiegeloktanten ermöglichten also Messungen in einer für die damalige Zeit sensationellen Geschwindigkeit und Genauigkeit. Ende des 18. Jahrhunderts wurde er durch den moderneren Sextanten ersetzt, der auch größere Winkelabstände als 90° messen konnte.

Der Oktant wurde vom englischen Astronomen und Mathematiker John Hadley zusammen mit seinen Brüdern George (1685–1768) und Henry (* 1687) entwickelt und 1731 der Royal Society in London vorgestellt. Zuerst als Hadley-Quadrant bezeichnet, wurde er zum Vorläufer der moderneren Sextanten. Der Messfehler war bei diesen frühen Geräten recht groß, sodass die Position oft nur sehr ungenau bestimmt werden konnte. Oft betrug die Abweichung mehrere Kilometer. Bei den ersten Modellen kam erschwerend dazu, dass sich das Holz im nassen Meeresklima verziehen konnte. Die Probleme bei der Positionsbestimmung in der Ära der Segelschiffe mit diesem Gerät lässt sich sehr gut nachvollziehen, ebenso wie die Technik dahinter. Die ursprünglich rund 50 cm großen Holzinstrumente konnten durch Nutzung von Messing auf ein handlicheres Maß verkleinert werden.

Ebenfalls im Jahr 1731 entwickelte Thomas Godfrey einen Oktanten in den Amerikanischen Kolonien.

Es ist übrigens noch gar nicht so lange her, dass die alleinige Methode der Ortsbestimmung auf hoher See die Ermittlung der Höhe eines Gestirns über dem Horizont war bzw. die Abstände der Gestirne untereinander. Da der Oktant nur Winkel bis zu 90° messen kann − also bei der Längenbestimmung durch die sog. Monddistanzen nur eingeschränkt brauchbar war − wurde er im späten 18. und frühen 19. Jahrhundert durch den Sextanten verdrängt.

Nach wie vor sind diese Methoden neben GPS, also satellitengestützten Systemen, in der Seefahrt im Einsatz.

Und so funktioniert der Oktant

Der bewegliche Arm (die Alhidade) wird auf 0° gestellt, anschließend wird durch das Peilloch der Horizont anvisiert. Er muss zweimal sichtbar sein – das untere Glas ist nur zur Hälfte verspiegelt, sodass man auf der linken Seite geradeaus sieht und rechts daneben das Bild des oberen Spiegels sieht. Dann wird die Alhidade und mit ihr der zweite Spiegel so verstellt, dass man das Bild des Sterns, dessen Höhe man messen will, auf einer Höhe mit dem Horizont sieht. Für die Bestimmung der Sonnenhöhe gibt es einschwenkbare Filter, um das Licht zu dämpfen und den kurzzeitigen Blick in die Sonne zu ermöglichen, ohne gleich Augenschäden davonzutragen.

Darum beherzigen und beachten Sie folgende Warnung:

„Nehmen Sie niemals die Sonne ohne eingeschwenkte Filter ins Besteck, um keine Augenschäden zu riskieren!“

Auf der Gradskala am unteren Ende des Sextanten können Sie dann die Höhe des Gestirns über dem Horizont ablesen.

Bild 01: Oktant aus Metall mit Nonius und Feineinstellung

2 Das Sternbild

Octans     Genitiv: Octantis     Abk.: Oct     dt.: Oktant

Auch das Sternbild Oktant wurde als eines von 14 Sternbildern in den Jahren 1751 / 1752 von dem französischen Astronomen Nicolas Louis de Lacaille eingeführt. Es soll an den Oktanten erinnern, ein Instrument, das von den Seefahrern seiner Zeit zur Positionsbestimmung und zur Messung von Winkelabständen genutzt wurde und noch bis weit ins 19. Jahrhundert in der Navigation zur Bestimmung der geografischen Breite in Gebrauch war. Auf Johann Elert Bode´s Uranographia von 1801 erschien de Lacailles neues Sternbild unter dem Namen „Octans Nautica“.

Bild 02: Oktant in J. E. Bode´s Uranographia von 1801

Der Oktant ist das südlichste Sternbild schlechthin, denn der Himmelssüdpol liegt in seinen Grenzen. Leider gibt es hier keinen hellen Stern, der analog zum Polaris in der Kleinen Bärin diesen wichtigen Punkt markieren könnte. Der nächstgelegene, heute ca. 1° vom südlichen Himmelspol entfernte und mit bloßem Auge sichtbare Stern ist der nur 5m45 helle σ Octantis, der neuerdings auch Polaris Australis genannt wird.

Dies ist aber, dank der Erdachsenpräzession, nur eine vorübergehende Rolle, denn der Pol verlagert sich in ca. 27.000 Jahren einmal rundum auf einer angenäherten Kreisbahn, deren Mittelpunkt der Ekliptikpol bildet. Im Jahr 1870 stand Sigma Octantis dem Himmelssüdpol am nächsten. Den hellsten Polastern werden die Bewohner der Südhalbkugel zwischen den Jahren 5000 und 11.000 haben. Dann wandert der Pol nämlich durch die Sternbilder Carina und Vela. Somit wird in den Jahren 8000 bis 9000 das „Falsche Kreuz“ ein sehr markanter Wegweiser zum Himmelssüdpol sein.

Einen Anhaltspunkt für die Position des Himmelspols erhält man, wenn man die geographische Breite seines Beobachtungsstandortes kennt. Der Pol steht so viele Grad über dem Horizont, wie es der Gradzahl des Breitenkreises des Beobachtungsstandortes entspricht. Dies gilt sowohl für den Himmelssüdpol als auch für den -nordpol.

Eine weitere grobe Aufsuchhilfe ist das Sternbild Dorado (Schwertfisch). Verlängert man den Bogen der Hauptsterne links an der GMW vorbei nach Süden, trifft man auf den Himmelssüdpol, der sich dann vor den figurbildenden Sternen des Oktanten befindet.

Zudem bildet der südliche Himmelspol mit den beiden Magellan´schen Wolken ein angenähertes gleichseitiges Dreieck.

Da dieses Sternbild mit seinen Grenzen den Himmelssüdpol umschließt, erstreckt es sich in Rektaszension von 0h00m00s bis 24h00m00s, also um einen Punkt, aber in Deklination reicht es von diesem Punkt, also von -90°00´00“, bis hinauf auf -74°18´14“ und beinhaltet dabei 291 Quadratgrad. Somit ist dieses Sternbild erst ab dem Äquator vollständig sichtbar.

Seine Nachbarsternbilder sind Inder, Pfau, Paradiesvogel, Chamäleon, Tafelberg, Kleine Wasserschlange und Tukan.

Meteorströme sind aus dieser Region keine bekannt.

2.1 Die Sterne

ν Oct ist mit 3m76 der hellste Stern im Sternbild Oktant. Es handelt sich um einen spektroskopischen Doppelstern mit einer Periode von 2,9 Jahren. Die Hauptkomponente ist ein orange leuchtender Unterriese der Spektralklasse K0III mit einer Oberflächentemperatur von 4860 K in rund 70 Lichtjahren Entfernung. Seine Position ist α 21h41m28,8s / δ -77°23´24,2“. Dieser  Stern hat seinen Kernwasserstoff verbraucht und sich ausgedehnt. Der sekundäre Stern ist wahrscheinlich ein roter Zwerg von sehr geringer Masse. Im Jahr 2009 wurde angenommen, dass das System einen Exoplaneten enthält, was auf Störungen in der Orbitalperiode basiert. Eine prograde Lösung wurde schnell ausgeschlossen, aber eine retrograde Lösung bleibt eine Möglichkeit. Allerdings könnten die Variationen auch darauf zurückzuführen sein, dass der sekundäre Stern selbst ein enger Doppelstern ist. Die Bildung eines Planeten in einem solchen System wäre aufgrund von dynamischen Störungen nämlich schwierig.

β Oct ist 140 Lichtjahre entfernt. Es handelt sich um einen 4m13 weiß leuchtenden Stern der Spektralklasse A9 IV mit einer Oberflächentemperatur von 8000 K auf der Position α 22h46m03,5s / δ -81°22´53,8“. Beta Octantis ist ein wahrscheinliches astrometrisch binäres Sternensystem und liegt etwa 149 Lichtjahre von der Sonne entfernt. Es bewegt sich mit einer Radialgeschwindigkeit von +19 km / s von der Sonne weg.

δ Oct steht auf der Position α 14h26m55,2s / δ -83°40´04,4“, ist ein 4m31 heller orange leuchtender Stern der Spektralklasse K2III mit einer Oberflächentemperatur von 4300 K. Er ist schon 4,3 Milliarden Jahre alt, also fast so alt wie unsere Sonne und ist von ihr 299 Lichtjahre entfernt.

θ Oct ist ein 4m78 heller, orange leuchtender Riesenstern der Spektralklasse K3III mit einer Oberflächentemperatur von 4200 K auf der Position α 00h01m35,7s / δ -77°03´56,6“ in einer Distanz zu uns von 217 Lichtjahren.

σ Oct steht dem Himmelssüdpol von den mit bloßem Auge sichtbaren Sternen am nächsten. Als Aufsuchhilfe ist Sigma Octantis jedoch nicht besonders geeignet, weil er mit nur 5m45 viel zu unauffällig und heutzutage nur unter sehr guten Bedingungen direkt zu sehen ist. Trotzdem wird er auch Polaris Australis genannt. Er ist ein weißer Unterriese der Spektralklasse F0III in 270 Lichtjahren Entfernung.

γ1 Oct ist ein einzelner, gelb leuchtender Stern mit einer scheinbaren visuellen Helligkeit  von 5m1, was bedeutet, dass er gerade hell genug ist, um für das bloße Auge schwach sichtbar zu sein. Dabei befindet sich dieser Stern etwa 265 Lichtjahre von der Sonne entfernt. Es bewegt sich mit einer Radialgeschwindigkeit von +15,4 km / s von der Sonne weg. γ1Octantis ist ein roter, weiterentwickelter G-Typ-Riesenstern mit einer Sternklassifikation von G7 III und einer Photosphärentemperatur von 5150 K. Er erzeugt seine Energie durch Heliumfusion in seinem Kern. Der Stern hat eine geschätzte 1,81fache Sonnenmasse und hat sich auf den 11fachen Sonnenradius ausgedehnt.

α Oct ist, obwohl er von Johann Bayer in seinem Sternatlas Uranometria als “Alpha” Stern bezeichnet wird, nicht der hellste Stern im Sternbild – dieser Titel gehört Nü Octantis. Alpha steht auf der Position α 21h04m43,1s / δ -77°01´25,6“, hat eine visuell scheinbare Gesamtgröße von 5m15 und ist ein spektroskopischer Doppelstern, der aus zwei Riesensternen der Spektraltypen F4III und F5III mit Photosphärentemperaturen um 6300 K besteht. Diese umkreisen sich mit einer Periode von etwas mehr als 9 Tagen. Das Paar wurde als bedeckungsveränderliches Doppelsternsystem vom Typ Beta Lyrae klassifiziert. Es ist eine helle Röntgenquelle mit einer Leuchtkraft von 22,78 × 1029 erg s-1 und steht in einer Raumtiefe von 148 Lichtjahren.

2.2 Deep Sky Objekte

NGC 2573 ist eine Balkenspiralgalaxie vom Hubble-Typ SBc auf der Position RA 01h41m53,2s /  Dec -89°20´03“. Sie ist nur 13m4 hell und hat eine Winkelausdehnung von 1,9´ x 0,7´ bei einer Entfernung von 128,2 Millionen Lichtjahren. Sie wird auch Polarissima Australis genannt und wurde am 29. März 1837 vom britischen Astronomen John Herschel entdeckt. Er notierte: “Neb Polarissima Australis. Schwach, rund, allmählich ein wenig heller in der Mitte. Fast auf halbem Weg zwischen einem Stern der 10. Größe südlich davon und einem kleinen Dreieck der Sterne 11., 13. und 13. Magnitude im Norden.” Diese Galaxie zeigt sich als kleiner Lichtfleck mit geringer Oberflächenhelligkeit, der von Ost nach West leicht gestreckt ist.

NGC 2573A und NGC 2573B/PGC 70533  sind ein wechselwirkendes oder sogar kollidierendes Galaxienpaar auf der Position RA 23h07m32.6s / Dec -89°07’00 “. Sie bringen ein gemeinsames Licht von nur 14m6 bei einer Winkelausdehnung von 1,7 ‘x 0,6´.
NGC 2573A und NGC 2573B sind keine echten NGC-Objekte, sondern im Volksmund so genannt, weil sie im allgemeinen Bereich von NGC 2573 liegen. PGC70680 ist 115 Millionen Lichtjahre von uns entfernt und hat einen wahren Durchmesser von 70.000 Lichtjahren. Sie ist vom Hubble-Typ eine SBb und zeigt sich als ein  länglicher Nebelfleck in Nord-Südrichtung. PGC70533 ist eine Galaxie vom Typ IBm pec fast in Kantenstellung und somit auch nur ein kleiner, dünner Lichtstreifen mit einer Ausrichtung quer zu PGC 70680. Bei fast gleicher Raumtiefe hat diese Galaxie einen wahren Durchmesser von 50.000 Lichtjahren.

NBGC 6438 / PGC 61793 und NGC 6438A bilden ein interagierendes Galaxienpaar, das im Okular einen sehr ungewöhnlichen Anblick bietet. John Herschel entdeckte es am 2. Juni 1835. Es befindet sich auf der Position RA 18h22m15,9s / Dec -85°24´06“. Sie erscheinen als ein kleines, rundes, mit 11m7 mäßig helles Leuchten mit einem schwachen, diffusen, länglichen, bogenförmigen Glühen an seiner östlichen Seite. Zusammen haben sie eine Winkelausdehnung von 1,6´x 1,4´. Das runde Gebilde ist NGC 6438; das schwache bogenförmige Leuchten kommt von NGC 6438A. In der Galaxie NGC 6438 ist ein Nukleus zu sehen und mit indirektem Sehen leicht zur Mitte aufhellt. Das bogenförmige Leuchten von NGC 6438A ist bei Einsatz spezieller Filter sichtbar. Es tritt dort auf, wo NGC 6438A mit ihrem Begleiter kollidiert.

Bild 03: Galaxienpaar NGC 6438 und NGC 6438A

NGC 7098 ist eine mit 11m3 leuchtende Galaxie vom Hubble-Typ (R)SAB(rs)a auf der Position RA 21h44m16.4s /  Dec -75°06’43”. Sie hat eine Winkelausdehnung von  4.1’ x 2.6’. John Herschel entdeckte NGC 7098 am 22. September 1835. Er notierte: “pF; R; erstes vg, das psbM; in einem Feld mit vielen großen Sternen und stark gepunktet.“ Diese Galaxie zeigt sich als ziemlich schwach leuchtend, hat einen breiteren helleren Kern, der leicht balkenförmig erscheint. Ein indirektes Sehen zeigt einen sehr schwachen äußeren Halo mit leicht ungleichmäßiger Helligkeit. In der gleichen Richtung liegen mehrere Hintergrundgalaxien, die aber nur den Großteleskopen oder Fotografien zugänglich sind.

Bild 04: NGC 7098

2.3 Sonstiges

Quellenangaben der Abbildungen

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Pyxis – Schiffskompass

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Was die Symplegaden in antiker Vorzeit nicht geschafft haben, ist vom französischen Astronomen Nicolas Louis de Lacaille 1752 bei seiner Kartographierung des Südhimmels erreicht worden – die Zerlegung der Argo Navis in mehrere ihrer Hauptbestandteile. Noch im 2. Jahrhundert unserer Zeit benannte Claudius Ptolemäus einzelne Sterne dieses großen südlichen Sternbildes nach Details der Argo, so unter anderem ein Grüppchen oberhalb der Segel als „Malus“, den Mast. Als nordwestlichstes Teil wurde dieser obere Mast samt Mastkorb zum heutigen Sternbild Pyxis Nautica, dem Schiffskompass. Hierbei handelt es sich jedoch nicht um einen Ausrüstungsgegenstand der Argo sondern um eines der neun wissenschaftlichen Geräte, die Lacaille mit der 1756 veröffentlichten „Planisphere des Etoiles Australes“ am Himmel verewigt hat. Bei der bildlichen Darstellung orientierte man sich am Aussehen der zur damaligen Zeit gebräuchlichen „Schiffsbüchsen“, lateinisch Pyxis Nautica, wie sie von den seefahrenden Navigatoren zur Tarnung genannt wurden. Die antiken Griechen, hier die mythischen Helden, kannten den Magnetkompass noch nicht. Sie navigierten noch überwiegend rein nautisch nach dem Stand der Gestirne einschließlich der Sonne. Hierbei wurde auch der Mast bzw. Mastkorb als Hilfsmittel mit einbezogen. Somit landete der „moderne“ Kompass an dieser exponierten Stelle. Johann Ehlert Bode fügte in seine Uranographia in das gleiche Areal noch die damals sehr wichtigen Geräte Log und Leine als Sternbild „Lochium Funis“ mit ein, die aber spätestens 1930 der Neuordnung durch die IAU zum Opfer fielen.

Zu den Ursprüngen des Kompasses habe ich sinngemäß nachfolgendes gefunden:

Die Erkenntnis, dass sich längliche, stiftartige Splitter von Magneteisenstein in Flüssigkeit schwimmend in die Nord-Süd-Richtung drehen, war in Europa seit der späten griechischen Antike  und in China seit der Zeit der Streitenden Reiche, zwischen 475 v. Chr. und 221 v. Chr. bekannt. Ob überhaupt und wenn ja in wie weit diese Erkenntnis schon zur Navigation genutzt wurde, ist nicht belegt. Die seriösen Studien zum Ursprung des Kompasses von Julius Klaproth und L. de Saussure führen zu dem Ergebnis, dass die chinesischen Navigatoren den nassen Kompass bereits um die Jahrtausendwende kannten. Die Chinesen benutzten seit dem 11. Jahrhundert eine schwimmende, nasse Kompassnadel, die Südweiser genannt wurde. Tatsächlich zeigt der chinesische Kompass nicht nach Norden, sondern nach Süden. Im Laufe der Zeit entwickelten sich daraus spezielle Kompassformen mit einer Einteilung in 24, 32, 48 oder 64 Striche bzw. Himmelsrichtungen. Ende des 11. Jahrhunderts empfahl Shen Kuo (1031–1095) in seinem Hauptwerk einen Kompass mit Einteilung in 24 Richtungen; kurz nach seinem Tod waren solche Kompasse tatsächlich im Gebrauch.

Die Matrosen des östlichen Mittelmeeres haben spätestens zur Zeit der Kreuzzüge vom nassen Kompass erfahren und ihn optimiert. Da er seinem Besitzer jedoch einerseits große Vorteile gegenüber der Konkurrenz brachte, andererseits aber scheinbar mit verbotenen magischen Kräften funktionierte, wurde dieses Wissen möglichst geheim gehalten. Als Pyxis (alt-/neugriechisch: πυξίς, pyxís) bezeichnet man unter anderem eine elfenbeinerne, metallene, hölzerne oder steinerne Büchse zur Aufbewahrung von Schmuckstücken oder anderen wertvollen Kleinutensilien. Dieser Begriff wurde auch zur Tarnung der Kompasse verwendet.

In Europa beschrieb der englische Gelehrte Alexander Neckam 1187 den nassen Kompass als eine magnetisierte schwimmende Nadel, die unter Seeleuten in Gebrauch war. Auch in einer kirchenkritischen Schrift des französischen Mönches Hugues de Bercy wurde die schwimmende Magnetnadel um 1190 erwähnt.

Auf der Arabischen Halbinsel wurde der Kompass nicht erfunden, da die arabischen Seeleute um die Jahrtausendwende über gute astronomische Kenntnisse verfügten und dank der gleichmäßigen Winde in ihrer Weltregion gut navigieren konnten. Im arabischen Raum lässt sich der nasse Kompass erst etwa einhundert Jahre nach Alexander Neckams Erwähnung nachweisen. Die erste schriftliche Erwähnung einer trocken, auf einem Stift spielenden Magnetnadel findet sich im Epistola de magnete von 1269, geschrieben von Petrus Peregrinus de Maricourt, womit der noch heute benutzte trockene Kompass erfunden war.

Der Kompass vom italienischen compasso „Zirkel, Magnetnadel“ abgeleitet, ist ein Instrument zur Bestimmung einer fest vorgegebenen Richtung, z. B. Himmelsrichtung, Navigations-Kurs, Peilrichtung. Ursprünglich ergänzte der Kompass in der Schifffahrt andere Methoden der Navigation, zum Beispiel anhand von Sonne, Sternen und Landmarken, Strömungen, Wellengang und Wassertiefe. Die älteste Ausführung des Kompasses ist die Kimme, die das Anpeilen des Polarsterns bei klarer Nacht erlaubt.

Das klassische Gerät ist der Magnetkompass, der anhand des Erdmagnetfeldes die Bestimmung der magnetischen Nordrichtung und daraus aller anderen Himmelsrichtungen erlaubt. Andere Ausführungen sind elektronische Kompasse auf Basis von Hall-Sensoren oder Fluxgate-Magnetometern; mit Letzteren kann der Betrag und die Richtung des Erdmagnetfeldes auf ein 1/100.000 des Absolutwerts genau bestimmt werden. Ganz ohne Ausnutzung des Erdmagnetfeldes arbeiten Kreiselkompasse, deren Wirkungsweise auf der Erdrotation beruht. Die Richtungsmessung erfolgt bezüglich der geografischen Nord-Süd-Richtung anstatt zu den Magnetpolen,  die von diesen rund 2000 Kilometer abweichen. Es gibt auch Kreiselinstrumente ohne Richtungsbezug (freie Kreisel wie den Kurskreisel), die allerdings periodisch nachgestellt werden müssen. Ebenfalls ohne Magnetfeld kommen Sonnenkompasse aus. Ein Kompass mit Peilvorrichtung wird auch Bussole genannt. Meist wird dieser Begriff in der Vermessungstechnik für Präzisions-Peilkompasse verwendet, vor allem in Österreich und Italien wird aber auch der einfache Wander– oder Marschkompass so genannt.

Bild 05: Wanderkompass mit ölgedämpfter Nadel

Der Kompass wurde ständig in Funktion und Anwendungsmöglichkeit weiterentwickelt und ist aus der heutigen Wissenschaft und Wirtschaft nicht mehr wegzudenken. Auch nur annähernd dies hier aufzählen zu wollen würde den Sinn und Rahmen dieses Kapitels sprengen.

2 Das Sternbild

Pyxis     Genitiv: Pyxidis     Abk.: Pyx     dt.: Kompass

Das Sternbild Pyxis befindet sich südlich der Wasserschlange und breitet sich in RA von 8h26m43s bis 9h27m37s aus und reicht in Dec von -37°17´31“ bis auf -17°24´41“. Hierbei bedeckt es eine Fläche von 221 Quadratgrad und ist ab 63° nördlicher Breite südwärts sichtbar. Die Nachbarsternbilder sind im Sinne des Sonnenlaufs Hydra, Puppis, Vela und Antlia. Das Sternbild kulminiert Anfang Februar um Mitternacht.

2.1 Die Sterne

α Pyx ist ein 3m68 heller blauweißer Riesenstern der Spektralklasse B2III. Er hat mehr als 10 Sonnenmassen und eine 10.000fache Leuchtkraft bei einer Oberflächentemperatur von 24.300 K. Sein Licht kommt von der Position α 08h43m35,5s / δ -33°11´10,9“ und aus einer Entfernung von rund 845 Lichtjahren. Solche Sterne enden für gewöhnlich in einer Supernova. Er markiert im Sternbild den Drehpunkt der Kompassnadel.

β Pyx ist ein Doppelstern auf der Position α 08h40m06,1s / δ -35°18´30“, wobei ein 3m95 heller, gelber Überriese der Spektralklasse G7Ib-II von einem nur 12m5 lichtschwachen Stern im Abstand von 12,6“ auf dem Positionswinkel 118° begleitet wird. Sein Licht kommt von einer 5600 K heißen Sternoberfläche über eine Distanz von 420 Lichtjahren zu uns und markiert im Sternbild das kürzere südliche Ende der Kompassnadel.

γ Pyx hat eine Helligkeit von 4m03 die von der 4270 K heißen Oberfläche eines orange leuchtenden Riesenstern der Spektralklasse K3III über 209 Lichtjahre Distanz zu uns kommt. Seine Position ist α 08h50m31,9s / δ -27°42´35,4“ und markiert die Spitze der Kompassnadel.

T Pyx ist eine im Minimum 12m0 lichtschwache, rekurrierende (wiederkehrende) Nova in einer Entfernung von 3260 Lichtjahren. In den Jahren 1890, 1902, 1920, 1944 und 1966 erfolgten Helligkeitsausbrüche bis auf 6,5 mag. Am 14. April 2011 wurde der Beginn eines neuen Ausbruches entdeckt auf der Position α 09h04m41s / δ -32°22´47“.

Bei dem System handelt es sich um einen Doppelstern bestehend aus einem weißen Zwerg und einem nahen stellaren Begleiter. Bedingt durch die Nähe fällt Material vom Begleiter auf die Oberfläche des weißen Zwergs. Wird durch den ansteigenden Druck und die Temperatur der nukleare Brennpunkt von Wasserstoff erreicht, gibt es einen Nova-Ausbruch. Der weiße Zwerg selbst bleibt dabei unversehrt und das Material vom Begleiter sammelt sich erneut auf seiner Oberfläche an, was dann nach einigen Jahren zu einem erneuten Ausbruch führt.

Der Namensteil „T“ folgt den Regeln zur Benennung veränderlicher Sterne (s. POLARIS 101) und besagt, dass T Pyxidis der dritte veränderliche Stern ist, der im Sternbild Schiffskompass (lateinisch Pyxis) entdeckt wurde.

2.2 Deep Sky Objekte

NGC 2613 ist eine Spiralgalaxie vom Typ SAB(rs)cd und liegt auf der Position RA 08h33m22,8s / Dec -22°58´25,2“. Die Galaxie hat eine Winkelausdehnung von 7,2′ × 1,8′, eine scheinbare Helligkeit von 10m4 und eine Flächenhelligkeit von 12m6; sie wurde am 20. November 1784 von Wilhelm Herschel entdeckt.

Bild 06: NGC 2613 Galaxie Typ SAB(rs)cd – 1,5m Danish Tel. ESO/IDA/Danish 1.5 m/R. Gendler, J.-E. Ovaldsen, C. Thöne and C. Féron

NGC 2627 ist ein 8m4 heller offener Sternhaufen auf der Position RA 08h37m15s / Dec -29°57´01“. Zum Haufen gehören 40 Sterne. Trümpler klassifizierte ihn als Typ III2m. Bei einer Entfernung zu unserer Milchstraße von 6.630 Lichtjahren erscheint er uns unter einer Winkelauflösung von 9 Bogenminuten. Der deutsch-britische Astronom William Herschel entdeckte diesen Sternhaufen am 3. März 1793.

Bild 07: NGC 2627 Digitized Sky Survey von Donald Pelletier unter Creative Commons Lizenz CC BY-SA 4.0

NGC 2658 ist ein offener Sternhaufen im Sternbild Kompass und hat eine Winkelausdehnung von 10,0′ und eine scheinbare Helligkeit von 9,2 mag. Er wurde am 28. Mai 1826 von James Dunlop entdeckt. Seine Koordinaten für das Äquinoktium 2000.0 lauten RA 08h43m27,3s und  Dec -32°39′22″. Er gehört zur Trümpler-Klassifikation II2m, hat eine ermittelte absolute Helligkeit von -2.33 mag und leuchtet aus einer Entfernung von 6.600 Lichtjahren. Von Lübeck aus ist NGC 2658 so gut wie nicht zu beobachten, da er so weit südlich liegt, dass er für dortige Beobachter niemals mehr als 3° über den Horizont steigen wird. Andere Bezeichnungen für dieses Objekt sind Mel 90 und Cr 195. 

Bild 08: NGC 2658 Digitized Sky Survey von Donald Pelletier unter Creative Commons Lizenz CC BY-SA 4.0

NGC 2818, ein planetarischer Nebel in der südwestlichen Ecke des Sternbildes nahe zur Grenze zum Segel auf der Position RA 09h16m06,1s / Dec -36°37´37“, hat eine Winkelausdehnung von 1,4 x 1,4 Bogenminuten und eine scheinbare Helligkeit von 8,2 mag. Er liegt 10.400 Lichtjahre tief im Raum. In gleicher Sichtlinie liegt ein offener Sternhaufen. NGC 2818 wurde am 28. Mai 1826 vom schottischen Astronomen James Dunlop entdeckt.

Bild 09: NGC 2818 planetarischer Nebel – Hubble Space Telescope

2.3 Sonstiges

Bild 10: Sternbild Pyxis (IAU in Zusammenarbeit mit Sky and Telescope)

Literaturhinweise

  • Die großen Sternbilder                                 I. Ridpath
  • Was Sternbilder erzählen                           G. Cornelius
  • Sternbilder von A bis Z                                 A. Rükl

Quellenangaben der Abbildungen

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Vela – Die Segel

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das Sternbild Vela ist ein neuzeitliches Sternbild mit antiken Wurzeln. Es gehörte ursprünglich zu dem größten Sternbild des Südens, der Argo Navis oder dem Schiff der Argonauten. Hierzu gehörten auch die heutigen Sternbilder Carina = Schiffskiel, Puppis = Achterschiff und Pyxis = Schiffskompass. Der Schiffskompass liegt in einem Bereich, der früher als der Mast des Schiffes (Malus) mit dem Mastkorb angesehen wurde. Zu antiken Zeiten wurde auch vom Mastkorb aus die Navigation unterstützt.

Das Sternbild Argo Navis belegte am Himmel eine Fläche von mehr als 1670 Quadratgrad bei einer Ausdehnung in Rektaszension von 06h02m0s bis 11h20m37s und in Deklination von -75°41´02“ bis -11°15´08“. In der Antike war das Sternbild nur südlich des 32sten Breitengrades in seiner gesamten Größe zu beobachten, das entspricht der afrikanischen Mittelmeerküste, dem alten Palästina, dem antiken Mesopotamien sowie dem antiken Persien oberhalb des Persischen Golfs. Wäre dieses Sternbild noch heute anerkannt, wäre es größer als Hydra.

Argo Navis war griechischen Beobachtern seit langem bekannt, von denen angenommen wird, dass sie dieses Sternbild um 1000 v. Chr. aus der ägyptischen Mythologie und Sternkunde übernommen haben. Zum Beispiel identifizierte Plutarch Argo mit der ägyptischen Konstellation, die das “Boot des Osiris” genannt wurde. Obwohl einige Wissenschaftler einen sumerischen Ursprung zum Gilgamesch-Epos theoretisierten, wird diese Hypothese abgelehnt, da es keine schriftlichen Beweise dafür gibt, dass die Sumerer oder andere mesopotamische Kulturen diese Sterne zu Konstellationen zusammengefasst haben. Einige Zeit später wurde die Konstellation speziell mit dem antiken griechischen Mythos von Iason und den Argonauten identifiziert.

Iason, Thronerbe von Iolkos, wird von seinem Großvater ausgesandt, das Goldene Vlies aus Kolchis von König Aietes zurück zu holen. Hierzu baut Iason mit Argos ein fünfzigruderiges Schiff, die Argo. Athene selbst fügt diesem Schiff ein sprechendes Holzstück aus der Eiche des Orakels von Dodona ein. Iason versammelt alle bedeutenden griechischen Helden um sich und besteht mit ihnen, den Argonauten, vielfältige Abenteuer. In Kolchis verweigert Aietes die Herausgabe des Goldenen Vlies und stellt Iason zur Bedingung mehrere unlösbare Aufgaben. Medeia, die Tochter des Aietes, die mit Zauberkünsten sehr vertraut ist, verliebt sich in Iason, hilft ihm scheinbar Unmögliches zu vollbringen und fährt mit ihm, nach dem Raub des Goldenen Vlieses und nach mehreren mit der Argo überstandenen Abenteuern, nach Iolkos.

Eigenartigerweise wurde das Schiff immer, selbst auf antiken Abbildungen ohne Bug und mit dem Heck voraus, in Richtung der Wanderung der Sterne über den Nachthimmel, dargestellt. Entweder ließen die alten Kartographen den Bug in einer Wolke oder zwischen den Symplegaden verschwinden.  Schon ein Fragment des Arat, ein griechischer Historiker im dritten Jahrhundert lebend, beschrieb sein scheinbar rückwärtiges Fortschreiten entlang des Nachthimmels, „Sternforward Argo von dem Canis Major Schwanz gezogen wird, denn sie kein gewöhnlicher Kurs ist, aber rückwärts gedreht kommt sie … “. In seinem Almagest beschrieb Claudius Ptolemäus Argo Navis als den Teil der Milchstraße zwischen Canis Major und Centaurus besetzend; und er benannte einzelne Sterne nach solchen Details wie das “kleine Schild”, das “Steuerruder” oder den “Masthalter” und umfassend das “Sternornament”, das sich bis in das 19. Jahrhundert in kartographischen Darstellungen in himmlischen Atlanten fortsetzte. Die Sterne Miaplacidus und Canopus bildeten den Schiffsboden. Im Coelum Stellarum Christianum von Julius Schiller wurde es umgedeutet zur Arche Noah.

Bild 01: Sternbild Argo Navis nach J. Hevelius 1690
Bild 02: Sternbild Argo im Jahr 1922

In der neueren Zeit wurde das Sternbild Argo Navis aufgrund seiner enormen Größe für wissenschaftliche Zwecke als unhandlich angesehen. Schon 1763 veröffentlichte der französische Astronom Nicolas Louis de Lacaille in seinem Coelum Australe Stelliferum, dass in Argo Navis mit dem bloßen Auge mehr als hundertsechzig Sterne deutlich sichtbar  waren und löste die Konstellation auf. Er bezeichnete die neuen Abschnitte als „Argus in Carina“, „Argus in Puppi“  und „Argus in Velis“. Lacaille ersetzte die Bezeichnungen von Bayer durch neue, die den stellaren Größen näher kamen, benutzte jedoch nur eine einzige griechische Buchstabenfolge; Carina erhielt z. B. α, β und ε, Vela γ und δ, Puppis ζ und so weiter, wobei er Pyxis scheinbar vergessen oder sogar absichtlich außer Beachtung gelassen hat.
Die endgültige Auflösung und Abschaffung von Argo Navis wurde von Sir John Herschel 1841 und 1844 vorgeschlagen, aber die alte Konstellation blieb parallel zu ihren von Lacaille eingeführten Bestandteilen bis ins 20. Jahrhundert im Gebrauch. Im Jahr 1922 erhielt sie zusammen mit den anderen Konstellationen eine dreibuchstabige Abkürzung: Arg. Als die IAU im Jahr 1930 die 88 modernen Konstellationen definierte und Carina, Puppis, Vela und Pyxis formell einführte, wurde die alte Konstellation Schiff Argo endgültig gestrichen. Somit ist  das Schiff Argo das einzige Sternbild der 48 von Ptolemäus in seinem Almagest aufgelisteten Konstellationen, welches offiziell nicht mehr als  zusammengehörig anerkannt ist.

In den POLARIS-Ausgaben 22 und 23 habe ich die Sternbilder Carina und Puppis entsprechend meinen damaligen noch recht bescheidenen Möglichkeiten beschrieben. Hier folgt nun der dritte Teil der alten Argo, die Segel. Die lateinische Bezeichnung „Vela“ steht für die Mehrzahl.

2 Das Sternbild

Vela     Genitiv: Velorum     Abk.: Vel     dt.: Segel (die)

Dieses ausgedehnte Sternbild erstreckt sich nördlich von Carina am Südhimmel in RA von 08h03m27s bis 11h05m50s und in Dec von -57°10´28“ bis auf -37°09´36“ und hat dabei einen Flächeninhalt von 500 Quadratgrad. Es ist vom südlichen Mitteleuropa und Südeuropa lediglich der nördliche Teil dieses Sternbildes sichtbar. Erst ab 33° nördlicher Breite südwärts ist es vollständig zu sehen. Seine Nachbarsternbilder sind von Nord im Uhrzeigersinn Luftpumpe, Schiffskompass, Achterdeck, Schiffskiel und Zentaur. Durch das Sternbild zieht sich das sternreiche Band der Milchstraße. Daher findet man in den Segeln mehrere offene Sternhaufen, einen Kugelsternhaufen und einen Planetarischen Nebel. Vier seiner Sterne sind auffallend hell. Die Sterne δ und κ Velorum zusammen mit ι und ε Carinae werden manchmal mit dem Kreuz des Südens verwechselt. Diese Sterngruppe wird daher auch als „Falsches Kreuz des Südens“ bezeichnet. Das falsche Kreuz ist größer und der rechte Balkenstern hängt, während er beim echten Kreuz hoch steht.

Aus der Sternbildregion Vela-Puppis ist der vom 1. bis 15. Dezember auftretende Meteorstrom der Puppiden-Veliden mit einem Maximum um den 7. Dezember bekannt. Der Radiant liegt bei RA 08:12 / Dec -45°. Die Zenithal-Hourly-Rate liegt bei 10 und die Geschwindigkeit bei 40 km/s.

Bild 03: Das Sternbild Vela – Segel

2.1 Die Sterne

γ Vel ist mit einer Gesamthelligkeit von 1m8 der hellste Stern in den Segeln mit dem Eigennamen Sulhail al Muhlif. Er ist ein etwa 1000 Lichtjahre entferntes Mehrfachsystem auf der Position α 08h09m30s / δ -47°20´. Die Komponenten A (auch γ2 Velorum) und B (auch γ1 Velorum) sind bei einem Winkelabstand von 41,2“ schon im Feldstecher leicht zu trennen. A ist seinerseits ein enger Doppelstern, der den hellsten bekannten „Wolf-Rayet-Stern“ enthält. Dieser hier ist ein 30.000 K heißer Riese mit 15tausendfacher Sonnenleuchtkraft, einer sehr schnell expandierenden Gashülle und einer Umlaufperiode von 78 ½ Tagen. Eine weitere Komponente mit der Bezeichnung P wurde durch Beobachtungen im Infraroten mittels adaptiver Optik in einem Abstand von 4,7″ bei einem Positionswinkel von 13° entdeckt. Sie ist wahrscheinlich ein physischer Begleiter und ihre Daten passen zu einem K4-Stern leicht oberhalb der Hauptreihe. Die Komponente B, γ1 Velorum, wurde mit B1 IV klassifiziert und hat eine Helligkeit von 4m2. Sie wurde mittels Speckle-Interferometrie am Kitt Peak und Cerro Tololo aufgelöst als Doppelstern mit den Komponenten Ba und Bb.

δ Vel ist ein Vierfachsternsystem mit dem Eigennamen Koo She in 80 Lichtjahren Entfernung. Es besteht aus den Paaren δ Velorum A und B sowie δ Velorum C und D. Infolge der Präzessionsbewegung der Erde wird δ Velorum in 7.000 Jahren den südlichen Polarstern darstellen. Der hellste der vier Sterne, Delta Velorum A, ist ein weißer Hauptreihenstern mit einer Helligkeit von 1m9. Sein Begleiter Delta Velorum B hat eine Helligkeit von ca. 5m0 und liegt von Komponente A 2,6 Bogensekunden entfernt. Das zweite Doppelsystem ist 69 Bogensekunden entfernt. Es besteht aus dem Stern 11. Größe Delta Velorum C und dem Stern 13. Größe Delta Velorum D, die ihrerseits einen Abstand von 6 Bogensekunden voneinander haben.

κ Vel ist ein spektroskopischer Doppelstern in 540 Lichtjahren Entfernung. Die 2m7 helle Hauptkomponente wird in 116,65 Tagen umkreist. Der arabische Name Markab bedeutet „Fahrzeug“. Den gleichen Namen tragen die Sterne α Pegasi und k Puppis.

µ Vel ist ein Doppelsternsystem bestehend aus einem 2m7 hellen gelben Riesen mit  den Eigennamen Alherem oder Peregrini und einem sonnenähnlichen gelben Zwergstern.

λ Vel ist ein 570 Lichtjahre entfernter veränderlicher Stern, der seine Helligkeit ohne erkennbare Periodizität von 2m14 nach 2m3 verändert. Er ist ein orangefarbener Riesenstern mit dem 200fachen Durchmesser und der 10.000fachen Leuchtkraft unserer Sonne. Seine Oberflächentemperatur beträgt etwa 4.000 Kelvin. Er trägt verschiedene Namen, nämlich Suhail, Alsuhail und Suhail al Wazn.

φ Vel hat den Eigennamen Tseen Ke, ist 3m5 hell, gehört der Spektralklasse B5Ib an und befindet sich auf der Position α 09h56m51,7s / δ -54°34´4,1“ in 1590 Lichtjahren Entfernung.

2.2 Deep Sky Objekte

NGC 3132 ist ein 9m2 heller planetarischer Nebel, der wegen seines Aussehens auch als südlicher Ringnebel oder Eight-Burst-Nebula bezeichnet wird. Er hat eine Ausdehnung von derzeit 0,5 Lichtjahren, wird von dem 9m9 hellen Zentralstern HD 87892 zum Leuchten angeregt und befindet sich auf der Position RA 10h07m02s / Dec -40°26´12“ in 2000 (5000) Lichtjahren Entfernung nahe der Grenze zum Sternbild Antlia (Luftpumpe). In seinem Inneren soll sich ein Doppelstern befinden. Er wurde am 2. März 1835 von John Herschel entdeckt.

Bild 04: NGC 3132 Der südliche Ringnebel – HST

NGC 3201 ist die Bezeichnung eines Kugelsternhaufens. Dieser hat einen Durchmesser von 18,2′, eine scheinbare Helligkeit von 6m8  und eine integrierte Spektralklasse F 6. Er steht auf der Position RA 10h17m36,8s / Dec -46°24´40,4” und sein Licht braucht bis zu uns 16.300 Jahre. Seine Randbereiche können bereits mit einem mittleren Amateurteleskop in Einzelsterne aufgelöst werden. James Dunlop entdeckte diesen Kugelsternhaufen am 28. Mai 1826.

Bild 05: NGC 3201 Kugelsternhaufen  – ESO-MPG 2,2m Teleskop

IC 2391,  ein galaktischer offener Sternhaufen, auch als Omicron Velorum Cluster bekannt, ist etwa 500 Lichtjahre von der Erde entfernt und hat einen Durchmesser von 9 Lichtjahren entsprechend 50´. Das Objekt hat eine scheinbare Helligkeit von 2m5 und beinhaltet über 30 Sterne. IC 2391 kann mit bloßem Auge gesehen werden. Der Sternhaufen ist mit rund 50 Millionen Jahren etwa so alt wie der Sternhaufen IC 2602. Die Position von IC2391 ist RA  08h40m32s / Dec -53°02´0“. Er steht in der Nähe des Sterns ο Velorum. Er wurde 964 von dem persischen Astronomen Abd ar-Rahman as-Sufi erstmals beschrieben. IC2391 wurde außerdem 1751von Nicolas Louis de Lacaille von Südafrika aus gefunden und 1752 als Lac II 5 katalogisiert. In einem Prismenfernglas bietet er einen sehr schönen Anblick.

Bild 06: IC 2391 offener Sternhaufen in Vela –  Roberto Mura

IC 2395 ist ein offener Sternhaufen in 3.000 Lichtjahren Entfernung. Aufgrund seiner größeren Entfernung ist er nicht so auffällig wie IC 2391, ist aber ein interessantes Objekt für kleinere Teleskope. Er befindet sich auf der Position RA 08h42m31s / Dec -48°06´0“ und hat eine Winkelausdehnung von 8´ entsprechend 15 – 26 Lichtjahren. Seine 45 Sterne sind zwischen 6 und 18 Millionen Jahre alt und erzeugen eine Haufenhelligkeit von 4m6. Der hellste Stern ist ein 5m53 heller B0-Typ. Lacaille entdeckte diesen offenen Sternhaufen am 17. Februar 1752.

IC 2602 ist ein offener Sternhaufen vom Typ II3m. Er hat eine scheinbare Helligkeit von 1m9 und einen Durchmesser von 100 Bogenminuten. Er ist rund 480 Lichtjahre vom Sonnensystem entfernt, hat einen Durchmesser von etwa 10 Lichtjahren und beinhaltet ca. 60 obere Hauptreihensterne. Das Alter des Haufens wird auf 50 Millionen Jahre geschätzt. Seine Position ist RA 10h42m56,5s / Dec -64°23´39“. Dieser Sternenhaufen wird wegen seiner Ähnlichkeit mit den Plejaden im Stier auch unter der Bezeichnung „Südliche Plejaden“ geführt. Entdeckt wurde das Objekt 1751 von Nicolas-Louis de Lacaille.

Bild 07: IC 2602 offener Sternhaufen  Südliche Plejaden – Roberto Mura

NGC2547 ist ein offener Sternhaufen mit noch sehr jungen Mitgliedern. Seine Position ist: RA 08h10m12s / Dec -49°12´0“ nahe der östlichen Grenze zum Sternbild Puppis. Er hat bei etwa 40 Mitgliedssternen eine Winkelausdehnung von 209 Bogensekunden und sein Gesamtlicht von 4m7 braucht 1960 Jahre bis zu uns. N. L. de Lacaille entdeckte ihn 1751/1752 während seines Aufenthaltes am Kap der guten Hoffnung.

Bild 08: Großfeldaufnahme NGC 2547 und Umgebung – MPG/ESO

SNR Vela ist die Bezeichnung für die filamentigen Nebelreste einer Supernova, die sich vor 11.000-12.300 Jahren in 815 Lichtjahren Entfernung im Sternbild Vela ereignet hat. Aus dem Vorgängerstern ist durch die Supernova zweierlei entstanden: Zum Einen der Vela-Pulsar mit der Bezeichnung PSR B0833-45, ein Neutronenstern von nur 10-15 Kilometer Durchmesser und einer Rotationsperiode von 11mal pro Sekunde. Er wurde von Astronomen der University of Sydney im Jahr 1968 als erster direkter Beweis dafür beobachtet, dass Supernovae  Neutronensterne bilden. Zum Anderen bildet das von der Supernova in den Raum geschleuderte Gas den Vela-Nebel, der eine Ausdehnung von 8 Winkelgrad oder rund 100 Lichtjahren hat. Zu dem Supernovaüberrest gehört auch der Bleistiftnebel mit der eigenen Bezeichnung NGC 2736 (Pencil-Nebula). Das Zentrum befindet sich in RA bei 08h35m20,6s und in Dec bei -45°10´35,2“ und das ganze Objekt hat eine scheinbare Flächenhelligkeit von 12m0.

Der Supernovaüberrest überlappt sich scheinbar mit dem von Puppis A, welcher aber vierfach weiter entfernt ist. Tatsächlich ist der Vela SNR einer der Erde am nächsten gelegenen Supernovaüberreste –und stellt möglicherweise auch die 1998 entdeckte Röntgenquelle RX J0852.0-4622 dar, die sich wie Puppis A mit dem Erscheinungsbild des Vela-Supernovaüberrestes überlappt. Der Vela-SNR gehört zu den hellsten Himmelserscheinungen im Röntgenbereich.

2.3 Sonstiges

Literaturhinweise

  • Die großen Sternbilder                                            I. Ridpath
  • Lexikon der griech. u. röm. Mythologie          H. Hunger
  • Internet z.B. Wikipedia                                            div. Autoren
  • Internet z.B. Astrowiki                                             div. Autoren
  • POLARIS 22 und 23                                                   E. – G. Bröckels
  • Astronomical Journal 137-3358                        B. D. Mason et al.
  • Sternbilder von A bis Z                                             A. Rükl

Quellenangaben der Abbildungen

  • Bild 01: from Wikimedia Commons, the free media repository,  gemeinfrei aus Firmamentum Sobiescianum sive Uranographia 1690 Johannes Hevelius
  • Bild 02: created by Torsten Bronger nach de Lacaille Puppis, Vela, Carina, Pyxis 2000 07 07; geändert 2014 E.-Günter Bröckels (Sternbildgrenzen rot eingefärbt)
  • Bild 03: from Wikimedia Commons, the free media repository; created by Torsten Bronger 2003; geändert 2014 E.-Günter Bröckels (Sternbildgrenzen rot eingefärbt;  grüne Hilfslinien erweitert; „Falsches Kreuz“ rot eingezeichnet und beschriftet; nachfolgende Objekte positioniert und beschriftet: NGC´s 2547, 2736, 3132, 3201, 3228;  IC 2395;  PSR B0833-45; SNR (roter Ring))
  • Bild 04: Wikiwand  Hubble Heritage Team (STScl/AURA/NASA/ESA 1998)  public domain
  • Bild 05: Wikipedia cretiv commons.org/licenses/by/4.0 ESO-https://www.eso.org/public/images/ngc3201/
  • Bild 06: From Wikimedia Commons, the free media repository; the copyright holder of this work, Roberto Mura 07/2007, release this work into the public  domain. This applies worldwide.
  • Bild 07: Roberto Mura 02/07/2007 in Wikipedia auf Italienisch – Übertragen aus it. wikipedia nach Commons durch Jacopo Werther,  gemeinfrei
  • Bild 08: ESO Wide Field Imager am MPG/ESO 2,2m Teleskope La Silla Chile; https://es.wiktionary.org/wiki/ Archivo:Wide-field_view_of_the_open_star cluster_NGC_2547.jpg
  • Bild 09: Bill Blair´s Vela Supernova Remnant Page,  Foto by Royal Observatory´s Super COSMOS H-alpha Survey project Vela SNR
  • Bild 10: Bill Blair´s Vela Supernova Remnant Page,  Foto by Bert Van Dokelaar, geändert 2017 E.-Günter Bröckels (rechts gedreht 90°)

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Pictor – Maler

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Der französische Astronom Abbé de la Caille hat 1751 bis 1752 insgesamt 14 der heute gültigen 88 Sternbilder, und davon viele für den südlichen Sternenhimmel, eingeführt. Dabei ist er oftmals sehr tiefgründig mit seinen Benennungen umgegangen. Ihm ging es vornehmlich darum, wissenschaftlich bedeutende Gerätschaften am Himmel zu verewigen. So benannte er ein Sternbild östlich von Schiffskiel und Achterschiff „Equuleus pictoris“ in der direkten Übersetzung aus dem Lateinischen “Der Pferdemaler”. Equuleus steht aber auch für Staffelei und gibt somit dem Sternbildnamen die Bedeutung “Staffelei des Malers”. Eigentlich wollte de Lacaille den „Bildermachern“ ein Denkmal an den Himmel setzen, waren ihm doch schon erste Kenntnisse von urzeitlichen Höhlenmalereien und anderen bedeutenden Bildwerken zuteil geworden, die Leben und Kunst der jeweiligen Epoche darstellten. Auf einem ersten Kartenwerk des südlichen Sternenhimmels, der Planisphère des Étoiles Australes, datiert von 1752 aber erst veröffentlicht im Jahr1756, erschienen erstmals seine neu eingeführten Sternbilder. Als Allegorie für das Sternbild Pictor verwendete er eine Malerstaffelei mit einer Farbenpalette. Die originale, französische Bezeichnung lautete: “Le Chevalet et la Palette”.

Bild 01: Erste Vorstellung des Sternbildes Maler von 1756

Sein von ihm verbesserter Himmelsatlas, Coelum australe stelliferum wurde posthum von Jean-Dominique Maraldi, 1763 in Paris herausgegeben. Auch hier soll in der bildlichen Darstellung eine Malerstaffelei mit einer Palette zu sehen sein.

Johann Ehlert Bode übernahm dieses Sternbild in seine Uranographia und benannte es „Pluteum Pictoris“ Pult (oder Arbeitsgerät) des Malers. Später wurde daraus die Bezeichnung Malerstaffelei.

Bild 02: Sternbild Maler in der Uranographia von J.E. Bode
Bild 03: Deviant Art.com Malerstaffelei

Die IAU kürzte 1930 die Benennungen letztlich auf den heute gültigen Sternbildnamen Maler ein. Im Internet fand ich bei Deviant Art.com folgende Erklärung zur Namengebung des Sternbildes:

Der Name “Equuleus Pictoris” ist der Name der alten Welt des Sternbildes “Pictor”, der Staffelei des Malers. “Equuleus” bedeutet Kleines Pferd oder Pony und auch Staffelei. “Pictoris” bedeutet “Der Maler”. Nach einigen Quellen wird das Wort “Equuleus” auch mit der Konstellation durch eine alte Sitte unter Künstlern verbunden, eine Leinwand auf ihrem Lasttier zu tragen, normalerweise ein Pony oder ein Easel. In älteren englischen Übersetzungen taucht nämlich die Bezeichnung „The Painter´s Easel“ auf. Das Wort Easel ist ein altes germanisches Synonym für “Esel”.

Die Staffelei des Malers stellt ein wichtiges Gerät dar, mit dem ein Künstler ein bildliches Kunstwerk erstellt. Ohne die Staffelei würde eine Leinwand auf dem Boden liegen und dazu führen, dass das aufgebrachte Gemälde verwittern und die aufgenommene Feuchtigkeit nicht absorbieren kann. Somit würde sich Schimmel entwickeln, was zur Zerstörung der Leinwand und zum Ruin eines potenziell großartigen Kunstwerks führen würde. Die Staffelei zeigt, unterstützt und schützt also die Grafik.

Die Cutie-Zeichnung ist ein Bild einer Staffelei aus dem Jahr 1756, dem gleichen Jahr, in dem die Konstellation Equuleus Pictoris  erstmals veröffentlicht wurde. Die sieben Sterne repräsentieren die tatsächlichen Sterne, aus denen die Konstellation besteht. Alpha Pictoris (rot), Gamma Pictoris (blau) und Beta Pictoris (gelb) sind die größeren, helleren Sterne. Zeta Pictoris (grün), Eta1 Pictoris (orange), Eta2 Pictoris (lila) und Iota Pictoris (rosa) sind die nächsthelleren Sterne. Der Hersteller der Zeichnung hat das Arrangement auf das Bild der Konstellation auf dieser Website aufgebaut: www.astronomyfactbook.com/cons…@ Und er identifizierte die Sterne anhand dieser Sternenkarte: www.constellation-guide.com/wp

2 Das Sternbild

Pictor     Genitiv: Pictoris     Abk.: Pic     dt.: Maler

Das Sternbild Maler ist ein eher unscheinbares Sternbild, dem Schiffskiel und dem Achterschiff vorauseilend. Es ist erst ab dem 26sten Breitengrad sichtbar und ab -35° ist es circumpolar. Seinen Meridiandurchgang hat dieses Sternbild am 17. März 9:00 p.m. Zum Auffinden eignet sich der in unmittelbarer westlicher Nähe befindliche Stern Canopus sowie die südlich liegende Große Magellansche Wolke. Seine 247 Quadratgrad belegen eine Fläche in RA von 04h32m52s bis 06h52m03s und in Dec von -64°09´07“ bis auf -42°47´47“. Hierbei wird es umgeben von den Sternbildern Columba, Caelum, Dorado, Volans, Carina und Puppis. Letztere gehörten zusammen mit Vela (Segel) und Pyxis (Schiffskompass) dem ehemaligen Mastkorb zum antiken Sternbild Argo Navis. Der Schiffskompass wird als nächstes Sternbild beschrieben (Erscheinungsdatum voraussichtlich 1. April 2022). Nachfolgend nun die mit guten Amateurteleskopen zugänglichen Objekte im Sternbild Pictor. Leider sind die meisten der in diesem Areal befindlichen Objekte so lichtschwach, dass sie nur den Großteleskopen zugänglich bzw. nur auf langbelichteten Fotografien darstellbar sind.

Bild 04: Das Sternbild Pictor – Maler

2.1 Die Sterne

α Pic ist ein 3m3  blau-weißer Unterriese der Spektralklasse  A6V, 10.000 K heiß und leuchtet weiss von der Position α 06h48m11,5s / δ -61°56´29“ und ist 100 Lichtjahre von uns entfernt. Sein Alter ist mit 660 Millionen Jahre angegeben und er entfernt sich vom Sonnensystem mit 20,6 km/s. Wenn wir uns statt auf Mond oder Mars mal auf Merkur begeben würden, sähen wir diesen Stern als Südpolarstern, analog unserem nordischen Polaris.

β Pic gehört zur Spektralklasse A3V und sein 3m85 helles weisses Licht braucht bis zu uns 63,5 Jahre. Es kommt von der realen Position α 05h47m17,1s / δ -51°03´59,5″ und verzögert sich, weil sich der Stern mit 20 km/s von uns fortbewegt. Im Jahr 1983 wurde um diesen Stern mit dem Infrarotsatelliten IRAS eine Ringscheibe aus festen Staub- und Eispartikeln entdeckt, die sich bis auf eine Entfernung von 400 AU vom Stern ausdehnt. Er war der erste Stern, bei dem dies direkt mittels eines optischen Teleskops beobachtet werden konnte. Beobachtungen weisen darauf hin, dass sich möglicherweise bereits zwei Planeten gebildet haben könnten. Letzte Hubble-Bilder weisen auf zwei getrennte Staubscheiben zusammen mit einem großen Planeten hin. 1995 deuteten Aufnahmen des Hubble Space Telescops auf eine Verbiegung des inneren Bereichs der Scheibe hin. Erneute Hubble-Weltraumteleskop-Beobachtungen mit der hochauflösenden Advanced Camera for Surveys konnten nachweisen, dass die verbogene Scheibe in Wirklichkeit aus zwei um 4 Grad geneigten, ineinander laufenden Staubscheiben besteht. Ein Erklärungsmodell ist die Annahme eines Planeten oder Braunen Zwerges von 20 Jupitermassen, der den Stern umrundet. Auf einem im Jahr 2003 mit dem VLT aufgenommenen Bild wurde im Jahr 2008 nahe bei Beta Pictoris ein Objekt mit etwa achtfacher Jupitermasse gefunden. Nachdem dieses in späteren Aufnahmen zunächst nicht mehr aufgetaucht war, konnte es auf einem im Herbst 2009 aufgenommenen, jedoch erst im Juni 2010 ausgewerteten Bild erneut ausfindig gemacht werden. Mit dieser Beobachtung wurde somit die Existenz eines Exoplaneten nachgewiesen, der Beta Pictoris in einer Entfernung von 8 AU umkreist, was etwa der Umlaufbahn des Saturn um die Sonne entspricht. Ferner war es damit erstmals gelungen, ein solches Objekt auf Positionen beiderseits seines Zentralgestirns festzuhalten. Möglicherweise ist ein Durchgang des Beta Pictoris b genannten Exoplaneten für einen leichten Helligkeitsabfall an Beta Pictoris verantwortlich, der im Jahr 1981 stattgefunden hat und bereits in einer 1995 veröffentlichten Analyse von auf La Silla gewonnenen Daten des Observatoriums der Universität Genf aufgefallen war. Bei weiteren Beobachtungen wurde festgestellt, dass Beta Pictoris b eine Rotationsdauer von nur etwa 8 Stunden hat.

γ Pic leuchtet orange mit 4m38 aus einer Entfernung von etwa 190 Lichtjahren. Sein Spektrum verrät einen K 1III-Stern mit einer Oberflächentemperatur von etwa 4600 K von der Position α 05h49m49,6s / δ -56°10´0“ . Entsprechend seiner Radialgeschwindigkeit entfernt er sich mit 16,7 km/s vom Sonnensystem.

δ Pic ist ein 4m72 helles, blauweißes Sternendoppel aus Riesensternen mit den Spektralklassen B0.5IV / B3III+09V und einer Photosphärentemperatur von 17.100 K. Seine Position ist α 06h10m17,9s / δ -54°58´07,1“. Die Hauptkomponente ist ein Bedeckungsveränderlicher vom b-Lyrae-Typ, der mit einer Periode von 1,673 Tagen schwach zwischen 4m65 und 4m9 variiert. Sein Licht braucht bis zu uns 1656 Jahre. Er bewegt sich mit 221 km/s vom Sonnensystem weg.

ζ Pic sendet uns sein gelbes, 5m44 helles Licht über eine Distanz von 118 Lichtjahren von der  6300 K heißen Photosphäre eines F7III-IV Spektraltypen.

η 1 Pic strahlt aus 85 Lichtjahren Entfernung als F5V-Spektraltyp mit 6600 K Photosphärentemperatur von der Position α 05h02m48,6s  /  δ -49°09´05,1“  mit einer Intensität von 5m37 . Sein Alter beträgt immerhin 2,15 Milliarden Jahre. Er wird in nur 11“ von einem 13m lichtschwachen Stern begleitet.

η 2 Pic leuchtet orangefarben 5m02 als Riesenstern der Spektralklasse K5III mit einer Photosphärentemperatur von 4100 K aus 440 Lichtjahren Entfernung von der Position α 05h04m58s / δ -49°34´40,2“.

ι Pic ist ein Doppelstern, dessen 5m6 helle Hauptkomponente vom Spektraltyp F0 von einem 6m4 hellen Stern in 12,3“ Abstand begleitet wird.

λ Pic scheint mit 5m3 aus 343 Lichtjahren Entfernung. Er wechselt gerade von der Spektralklasse  K0 nach K1III, wobei er sich von ehemals 5000 K abkühlt und ausdehnt.

Kapteyns Stern, er variiert leicht zwischen 8m9 und 9m22, ist ein roter Unterzwerg in einer Entfernung von gerade mal 12,8 Lichtjahren.  Seine Oberflächentemperatur beträgt nur 3570 K. Er wurde 1897 vom Holländer Jacobus C. Kapteyn entdeckt. Seine Besonderheit ist seine große Eigenbewegung (die zweitgrößte nach Barnards Pfeilstern) am Himmel. Er legt jährlich 8,7“ zurück und erreicht so in zwei Jahrhunderten eine Verlagerung um einen scheinbaren Monddurchmesser. Er rast mit einer realen Geschwindigkeit von 280 km/s durchs Weltall. Seine derzeitige Position ist α 05h11m40,6s / δ -45°01´06,3“. Im Jahr 2014 zeigte die Analyse der Doppler-Variationen von Kapteyns Stern mit dem HARPS-Spektrographen, dass er zwei Super-Erden beherbergt – Kapteyn b und Kapteyn c. Kapteyn b ist der älteste bekannte potentiell bewohnbare Planet und schätzungsweise 11 Milliarden Jahre alt.

Bild 05: Größenvergleich Kapteyns Stern mit Erde, Jupiter und Sonne

AB Pic ist ein 9m13 schwacher, veränderlicher Stern der Spektralklasse K1Ve  und befindet sich 150 Lichtjahre von unserer Sonne entfernt auf der Position α 06h19m12,9s / δ -58°03´15,3“. 2003 wurde ein Begleiter entdeckt, dessen Masse mit rund der 13-fachen Jupitermasse in dem Grenzbereich zwischen Planet und Braunem Zwerg liegt; er ist etwa 260 AE von AB Pictoris entfernt.

2.2 Deep Sky Objekte

Pic A ist ein intensiver 485 Millionen Lichtjahre entfernter Radiostrahler im nördlichen Teil des Sternbildes, eine Radiogalaxie, die einen 800.000 Lichtjahre langen Plasmastrahl aus einem supermassiven Schwarzen Loch in seiner Mitte abschießt. Am 29. Juli 2006 wurde in Pictor A ein Gammastrahlenausbruch – GRB 060729 – beobachtet, dessen extrem langes Röntgennachleuchten für 642 Tage, also fast zwei Jahre, nachweisbar war.

Bild 06: Pictor A;  Composit Chandra X-Ray Observatory und Australian Telescope Compact Array

NGC 1705, eine 11m8 helle, 17 Millionen Lichtjahre entfernte irreguläre Galaxie vom Typ SA0pec mit einer Winkelausdehnung von 1,9´ x 1,4´ entsprechend einem Durchmesser von 2000 Lichtjahren. Ihre Position ist RA 04h54m13,5s / Dec -53°21´39,8“ Im Zentrum von NGC 1705 befindet sich ein gewaltiger Sternhaufen, der sich wahrscheinlich während einer Phase heftiger Sternentstehung, eines sogenannten Starbursts, vor etwa 26 bis 31 Millionen Jahren gebildet hat. Als Studienobjekt eignet sich NGC 1705 besonders, da manche Astronomen vermuten, dass Zwerggalaxien zu den ersten Sternansammlungen im frühen Universum gehörten. NGC 1705 wurde am 5. Dezember 1834 von dem britischen Astronomen John Herschel entdeckt.

Bild 07: NGC 1705 vom HST

SPT-CL J0546-5345 ist einer der massereichsten Galaxienhaufen, die jemals im frühen Universum gefunden wurden. Es wird angenommen, dass er 7 Milliarden Lichtjahre entfernt ist. Er wurde 2008 am South Pole Telescope durch den Sunyaev-Zel’dovich-Effekt entdeckt. Der Cluster hat eine Rotverschiebung von z = 1.067. Nachfolgende Beobachtungen und Studien mit Spitzer, Chandra und optischen Teleskopen erlaubten, Clustermitglieder zu identifizieren und die Rotverschiebung zu messen. Unter Verwendung der Geschwindigkeitsdispersion wurde die Clustermasse auf 1015 Sonnenmassen geschätzt. Als Position wurden RA 86.6542° und Dec -53.7589° angegeben. Nachfolgende Aufnahme wurde freigegeben von Astrophysics Science Division at NASA / GSFC.

Bild 08: Der Galaxienhaufen SPT-CL J0546-5345  NASA / Goddard Space Flight Center

2.3 Sonstiges

Literaturhinweise

  • Taschenatlas der Sternbilder                   J. Klepesta / A. Rükl
  • Was Sternbilder erzählen                         G. Cornelius
  • Die großen Sternbilder                               I. Ridpath
  • dtv-Atlas zur Astronomie                          J. Herrmann
  • Sternbilder von A – Z                                   A. Rükl
  • Internet Wikipedia                                       div. Autoren
  • Internet Wikimedia.org                             div. Autoren

Quellenangaben der Abbildungen

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Norma – Winkelmaß

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das Sternbild Winkelmaß wurde 1752 von Nicolas Louis de Lacaille auf seinen Karten des südlichen Sternenhimmels eingeführt. Als Allegorien wählte er einen Zeichenwinkel und ein darunter liegendes Lineal. Dass er dieses Sternbild mit dieser nüchternen Benennung nahe dem hellsten Stern im Centaur, Toliman, und zwischen dem Rücken des Wolfs und dem Schwanz des Skorpions platzierte, zeigt eigentlich, wie wenig dichterische Phantasie Lacaille besaß. Den Wert des Begriffes Winkelmaß wusste er aber allemal zu schätzen, ist hier doch einer der Grundpfeiler der Mathematik verewigt worden.

Das Winkelmaß ist auch eines der drei Hauptsymbole der Freimaurerei neben dem Buch des heiligen Gesetzes und dem Zirkel. Es ist ein Symbol für die Gewissenhaftigkeit. Am rechten Winkel des Winkelmaßes soll der Mensch seine Handlungen ausrichten, nämlich nach Recht und Menschlichkeit. Das Winkelmaß ist auch das Amtsabzeichen des Meisters vom Stuhl.

Zitat: Das Winkelmaß (frz. Equerre, engl. Square), das stets vom Stuhlmeister als Zeichen seiner Würde getragen wird, bildet auf dem Altar mit Bibel und Zirkel die drei “Großen Lichter” der freimaurerischen Symbolik. “Das Winkelmaß ist das Symbol der Gewissenhaftigkeit, das die menschlichen Handlungen nach dem Gesetz der Rechtwinkeligkeit, d. h. nach Recht, Gerechtigkeit und Menschlichkeit ordnet und richtet, auf dass dieselben immer regelrecht seien und sich innerhalb der rechten Schranken der göttlichen und menschlichen Gesetze halten. Es wird angelegt an die menschlichen Handlungen, auf dass sie erkannt werden als frei von Eigennutz, getrieben von innerem Drang, ohne äußeren Zwang, in voller Erkenntnis des Rechten und Pflichtmäßigen.”

Quelle: Internationales Freimaurer-Lexikon von Eugen Lennhoff und Oskar Posner (1932)

Die uralte Bedeutung des Winkels in Form des Winkelmaßes als konstruktives Werkzeug des rechten Winkels geht sogar bis auf altägyptische Gottheiten,  zum Beispiel Osiris als  Richter über die Toten, zurück.

Das Winkelmaß ist auch eine in der Heraldik beliebte Wappenfigur, die sehr unterschiedlich dargestellt und oftmals neben der Waage als Allegorie für Recht und Gerechtigkeit verwendet wurde.

Das Winkelmaß dient zur Angabe der Winkelweite eines ebenen Winkels in der Mathematik und als physikalische Größe. Je nach Einsatzgebiet werden verschiedene Maße und deren Einheiten verwendet. Auch auf gekrümmten Flächen wird das Winkelmaß verwendet. Hier misst man die Winkel in der Tangentialebene der Fläche, zum Beispiel bei der sphärischen Trigonometrie und der sphärischen Astronomie.

Lineare Winkelmaße zeichnen sich dadurch aus, dass sie bei Drehung des Winkels erhalten bleiben, und bei einer Aufteilung einer Drehung in zwei Teildrehungen das Winkelmaß zur Gesamtdrehung gleich der Summe der Winkelmaße der Teildrehungen ist.

Daher gibt es zwei ausgezeichnete Maßeinheiten für den Winkel, die sich beide von einem intuitiven Bezugssystem von vorne, hinten, rechts und links ableiten, den Vollwinkel (Vollkreis) und den rechten Winkel (Viertelkreis). Diese beiden Konzepte finden sich schon in den frühesten Spuren protowissenschaftlicher Methoden früher Hochkulturen.

So auch das Polygon, das über den Zusammenhang zwischen Innenwinkel und Zentriwinkel geometrischen Zugang zum Winkel ermöglicht. Hier ist insbesondere das Quadrat zu nennen, bei dem beide einen rechten Winkel bilden. Während der rechte Winkel heute nur insofern als Maß dient, sprachlich und natürlich auch rechentechnisch „gerade“ von „schiefen“ Winkeln zu unterscheiden und „spitze“ von „stumpfen“, also ein Prüfkriterium zur Zuordnung boolescher Werte (ja oder nein) ist, ist der Vollwinkel gesetzliche Maßeinheit. Bis etwa 1980 war aber auch der rechte Winkel als Rechter mit dem Einheitenzeichen ∟ in Deutschland üblich.

Der Kreis, der über das Konzept der Unterteilung in Kreissektoren, wie sie etwa als „Tortenstück“ geläufig ist, in enger Beziehung zum arithmetischen Prinzip der Bruchrechnung steht, ist der Vollwinkel. Er ist der kleinste Winkel, um den ein Strahl, um seinen Ursprung gedreht, wieder seine Ausgangsrichtung erreicht. Im Gradmaß wird der Vollwinkel in 360 gleich große Teile unterteilt. Ein solcher Teil wird als ein Grad bezeichnet und mit dem Einheitenzeichen ° gekennzeichnet. 1 Grad wiederum wird in 60 Bogenminuten unterteilt und mit dem Zeichen ‘ deklariert. 1 Bogenminute wird in 60 Bogensekunden unterteilt und hat die Kennung  “.

1 Vollwinkel = 360° / 1° = 60‘ / 1‘ = 60“    1 Vollwinkel = 21.600‘ oder 1.296.000“

Im Winkelmaß Zeit wird ein Vollwinkel in 24 Stunden unterteilt. Es wird in der Astronomie zur Angabe des Stundenwinkels und der Rektaszension verwendet:

1 Vollwinkel = 24h  / 1h  = 60m ~ 15° / 1m = 60s ~ 0,25°

Ein anderes Messprinzip der Winkelweite erfolgt über das Verhältnis von Höhenunterschied zu Länge im Sinne eines Steigungswinkels, die Berechnung erfolgt über den Tangens des Winkels. So wurden zum Beispiel die Höhen früh- und vorzeitlicher Bauten festgelegt und so werden heute noch Straßensteigungen berechnet und angegeben.

~0,57° → 1 % 1° → ~1,75 % 15° → 26,79… % 45° → 100 % 90° → ꝏ

An Stelle eines ebenen Winkels kann man natürlich generell dieses Längenverhältnis zweier senkrecht zueinander stehender Strecken angeben. Dies entspricht dann immer dem Tangens des Winkels im zugrundeliegenden rechtwinkligen Dreieck. In der Luftfahrt gibt man so die Gleitzahl eines Flugzeuges an.

Für Mathematiker gibt es noch viele weitere Anwendungsbeispiele, die allesamt beweisen, wie wichtig das Winkelmaß früher war und heute immer noch ist.

2 Das Sternbild

Norma     Genitiv: Normae   Abk.: Nor     dt.: Winkelmaß

Der heute noch fälschlicherweise kursierende Begriff „Lineal“ für dieses Sternbild steht im  Zusammenhang  mit der ursprünglichen Benennung durch de La Caille als „Norma et Regula“ dem „Winkelmaß und Lineal“. Lacaille, der für die Bezeichnungen „seiner“ Sternbilder häufig technische Geräte verwandte, formte es aus Sternen, die zuvor zum Wolf und zum Altar gehörten. Es soll einen Winkelmesser und ein Lineal darstellen, die von Seefahrern zur Positionsbestimmung genutzt wurden. Letzteres ist wegen seiner verhältnismäßigen Bedeutungslosigkeit sehr schnell wieder aus den Atlanten verschwunden und ist, analog der Gans beim Füchschen, von der IAU 1930 nicht mehr als gültiger Sternbildteil berücksichtigt und anerkannt worden. Mit der gleichzeitigen Festlegung der heute gültigen Sternbildgrenzen durch IAU wurden mehrere Sterne dem Skorpion zugeschlagen. Das Winkelmaß hat auch keine Sterne mit der Bezeichnung Alpha oder Beta mehr. Die ehemaligen Sterne Alpha Normae  und Beta Normae gehört heute zum Skorpion und tragen dort die Bezeichnung N und H Scorpii.

Das Winkelmaß ist ein relativ unscheinbares Sternbild südlich des markanten Skorpions. Keiner seiner Sterne ist heller als die 4. Größenklasse. Durch dieses Sternbild zieht sich das Band der Milchstraße und es enthält aus diesem Grund eine Vielzahl von nebligen Objekten, offenen Sternhaufen und Kugelsternhaufen. In Richtung des Winkelmaßes, fast verborgen durch unsere Milchstraße, befindet sich der so genannte Norma-Galaxienhaufen (Abell 3627). Hierbei handelt es sich um eine riesige Ansammlung von Galaxien in einer Entfernung von etwa 200 Millionen Lichtjahren. In ihm liegt das Zentrum des so genannten Großen Attraktors, auf den sich „unser“ Galaxienhaufen, der Virgo-Haufen, zubewegt.

Das Winkelmaß liegt so weit südlich, dass es von Mitteleuropa aus nicht beobachtet werden kann. Seine Fläche mit 165 Quadratgrad Inhalt erstreckt sich in RA von 15h12m14s bis 16h36m08s und in Dec von -60°26´08“ bis auf -42°16´03“. Somit ist es erst ab dem 30sten Breitengrad vollständig sichtbar. Seine Nachbarn sind Scorpion, Lupus, Circinus, Triangulum Australe und Ara. Die Hilfslinien werden in den heutigen Sternatlanten sehr unterschiedlich gezogen. Die gebräuchlichste Art ist in der Sternkarte dargestellt. Etwas genauer wären zwei Linien ε – γ 2 und γ 1 – η .

Bild 05: Das Sternbild Norma – Winkelmaß 

2.1 Die Sterne

γ1 und γ2 Nor erscheinen dem bloßen Auge als Doppelstern. Tatsächlich handelt es sich um Sterne, die nicht durch die Schwerkraft aneinander gebunden sind, sondern von der Erde aus gesehen fast in einer Richtung liegen. γ1 steht 2m49,5s östlicher und 4´14,6“ nördlicher von γ2.

Sie markieren den südlichen Eckpunkt des fast rechten Winkels vom Sternenrhombus.

γ2 Nor ist ein 4m01 gelb leuchtender Riesenstern, der sich bei 2,16-facher Sonnenmasse auf deren 10-fachen Durchmesser aufgebläht hat. Er gehört der Spektralklasse G8III an mit einer Temperatur an der Photosphäre von 4700K. Er wandert  auf dem horizontalen Zweig und hat sein Heliumbrennen bereits begonnen. Dieser Stern befindet sich auf der Position α 16h19m50,4s / δ -50°09´19,8“  in etwa 450 Lichtjahren Entfernung von der Sonne und bewegt sich mit einer Radialgeschwindigkeit von -29 km/s auf uns zu. Gamma2 Normae ist ein enger Doppelstern mit einem 10m0 Begleiter.

γ1 Nor ist ein 4m97 heller und 1500 Lichtjahre entfernter blauer Überriese der Spektralklasse F91a mit einer Photosphärentemperatur von 6000 K, der bei 6,6-facher Sonnenmasse ihren 160-fachen Durchmesser angenommen hat. Seine derzeitige Position ist α 16h17m0,9s / δ -50°04´05,2“ , von der er sich mit einer Radialgeschwindigkeit von -16,0 km/s auf die Sonne zubewegt. Sein Alter wird auf rund 55 Millionen Jahre geschätzt.

Der Meteorstrom der Gamma-Normiden hat hier seinen Radianten.

δ Nor gehört einer sehr ungewöhnlich zusammengesetzten Spektralklasse an. In seinem 4m74 hellen bläulich-weißen Licht von einer 7700 K heißen Photosphäre befinden sich K-Linien eines A3-Sterns, Wasserstofflinien eines A7-Typen und Metalllinien eines F0-Sterns. Dies führt zu der Typisierung kA3hA7mF0III. Dieser rund 70 Millionen Jahre alter Riesenstern befindet sich auf der Position α 16h06m29,4s / δ -45°10´23,5“, von der aus er sich mit einer Radialgeschwindigkeit von -15,5km/s auf die Sonne zubewegt. Noch ist er 125 Lichtjahre weit weg. Wegen Änderungen in seiner Radialgeschwindigkeit wurde ein Begleiter gefunden, der Delta Normae zum astrometrischen Doppelstern macht. Im Sternbild markiert er die nördliche Rhombusecke.

ε Nor ist ein echtes Doppelsternsystem in 400 Lichtjahren Entfernung. Die beiden sichtbaren, 4m54 und 6m68 hellen Komponenten können aufgrund ihres weiten Abstandes von 22,8 Bogensekunden bereits mit einem kleinen Teleskop beobachtet werden. Der hellere Partner gehört der Spektralklasse B4V mit einer Oberflächentemperatur von rund 17.000 K an. Der lichtschwächere Stern besitzt wiederum einen Begleiter, dessen Abstand so gering ist, dass er nur spektroskopisch nachgewiesen werden kann. Epsilon Normae markiert die westliche Ecke des Sternenvierecks.

η Nor markiert mit 4m02 die östliche Ecke des Sternenrhombus auf der Position α 16h03m12,9s / δ -49°13´46,9“. Sein gelbes Licht kommt von der 5000 K heißen Sternoberfläche eines G8III-Riesen, der sich aufgebläht und dabei entsprechend abgekühlt hat, und braucht bis zu uns 220 Jahre.

ι Nor ist ein 140 Lichtjahre entfernter enger Doppelstern, dessen 5m6 und 5m8 helle Komponenten einander im Abstand von 0,5“ in 26,9 Jahren umkreisen. In einem Winkelabstand von 11 Bogensekunden wird im Teleskop ein dritter, nur 11m0 lichtschwacher Stern sichtbar. Dieser ist jedoch nur 55 Lichtjahre entfernt und gehört physikalisch nicht zu dem System.

μ Nor ist ein extrem leuchtkräftiger blauer Überriese der Spektralklasse O9Iab in 4660 Lichtjahren Entfernung. Seine Helligkeit variiert zwischen 4,87 und 4,98m. Es handelt sich um einen veränderlichen Stern vom Typ Alpha Cygni.

R und T Nor sind veränderliche Sterne vom Typ Mira, deren Helligkeit sich über längere Zeiträume stark ändert. R Nor ändert seine Helligkeit von 6m5 nach 13m9 in 507,5 Tagen und T Nor hat eine Periode von 242,6 Tagen.

S Nor ist ein pulsationsveränderlicher Stern vom Typ der Cepheiden, dessen Licht zwischen 6m12 und 6m77 mit einer Periode von 9,754 Tagen schwankt. Er liegt inmitten des offenen Sternhaufens NGC 6087.

2.2 Deep Sky Objekte

Menzel 3, (Mz3) der Ameisennebel, ist ein junger 13m8 heller planetarischer Nebel. Der Name Ameisennebel kommt von seinem Aussehen, da er dem Thorax einer Ameise ähnelt. Er  breitet sich strahlenförmig mit einer Geschwindigkeit von ca. 50 km/s aus. Er zeigt keine Spur von molekularen Wasserstoff-Ausstößen. Der Ameisennebel wurde 1922 von Donald Howard Menzel auf Fotografien des Bruce-24-Inch-Teleskops an der Außenstation des Harvard College Observatory in Arequipa in Peru entdeckt. Er steht auf der Position RA 16h17m13,4s / Dec -51°59´10,3“. Er hat eine Winkelausdehnung von 0,83´x 0,2´ und ist noch 3000 Lichtjahre von uns entfernt. Er nähert sich uns mit einer Radialgeschwindigkeit von -21,2 km/s.

Bild 06: Der Ameisennebel Menzel 3

NGC 6134, auch Bennett76 genannt, ist ein schöner offener Sternhaufen, der sich scheinbar vor einer Dunkelwolke befindet. Hierdurch kommen seine 179 Haufensterne mit Einzelhelligkeit zwischen 13m und 15m trotz einer schwachen Konzentration zur Haufenmitte gut zur Geltung. Die Gesamthelligkeit ist mit 7m2 angegeben, seine Entfernung mit 913 pc und die Position mit RA 16h27m46s / Dec -49°09´06“.

Bild 07: NGC 6134 vor einer Dunkelwolke

NGC 6164 / NGC 6165 bezeichnen die beiden hellen Strahlungskeulen eines 6m7 mag hellen bipolaren Emissionsnebels im Sternbild Winkelmaß, der etwa 1236 Parsec entsprechend 4030 Lichtjahre von der Erde entfernt ist und seinerseits vor einem riesigen leuchtenden Gasnebel liegt. Er wurde am 1. Juli 1834 von John Herschel mit einem 18-Zoll-Spiegelteleskop entdeckt, der dabei „Neb violently suspected immediately preceding a double star“ notierte. Wir finden dieses Gebilde auf der Position RA 16h3352,3s / Dec -48°06´40“ mit einer Winkelausdehnung von 1,0´x 0,3´. Es wird vom Stern HD 148937 durch Ionisation zum Leuchten angeregt.

Bild 08: Gasnebel NGC 6164 (NASA 201603030)

NGC 5946 steht als schöner Kugelsternhaufen auf der Position RA 15h35m28,5s / Dec -50°39´34,8“ mit einer Gesamthelligkeit von 9m6 im östlichen Teil des Sternbildes Norma, etwa mittig und zur Sternbildgrenze zum Wolf.

Bild 09: Kugelsternhaufen NGC 5946

NGC 6067 ist ein offener Sternhaufen in 6000 Lichtjahren Entfernung auf der Position RA 16h13m12s / Dec -54°13´0“. Er enthält etwa 100 Sterne der 10. Größenklasse. Seine Gesamthelligkeit von 5m6 verteilt sich auf eine Winkelausdehnung von 13´x13´. Man findet ihn etwa 1° nördlich des Sterns κ Normae. Obwohl schon mit bloßem Auge am dunklen Himmel erkennbar, ist der Sternhaufen am besten mit dem Fernglas oder einem Teleskop zu beobachten. Bei 12-Zoll-Öffnung zeigen sich etwa 250 zum Haufen gehörende Sterne. Entdeckt von James Dunlop im Jahr 1826 wird NGC 6067 von John Herschel als „ein hervorragend reicher und großer Cluster“ und von Stephen James O’Meara als „einer der schönsten  offenen Sternhaufen am Himmel“ beschrieben. Seine hellsten Sterne haben eine scheinbare Helligkeit von etwa 8m und 84 Sterne sind heller als 12m. NGC 6067 befindet sich in der Norma-Sterne-Wolke im Norma-Arm der Milchstraße. Sein Alter wird mit rund 102 Millionen Jahre angegeben und er enthält 893 Sonnenmassen und  die beiden folgenden Cepheiden: QV340 Normae ist ein gelber Riese der Spektralklasse G0Ib, dessen Helligkeit zwischen 8m26 und 8m60 über 11,28 Tage variiert, während der schwächere ZV340 zwischen 8m71 und 9m03 mit einer Periode von 3,79 Tagen variiert.

Bild 10: Offener Sternhaufen NGC 6067

NGC 6087 ist mit 5m4 bei einer Winkelausdehnung von 12´x 12´ der hellste offene Sternhaufen im Winkelmaß. Er ist bereits mit bloßem Auge als nebliges Fleckchen zu erkennen. Er steht auf der Position RA 16h18m48s / Dec -57°56´0“  und enthält etwa 40 Sterne der 7. bis 11. Größenklasse. Der hellste Stern ist der Veränderliche S Normae. Der Sternhaufen ist 3500 Lichtjahre von uns entfernt.

Bild 11: Offener Sternhaufen NGC 6087

Norma-Galaxienhaufen (auch Abell 3627) ist ein großer Galaxienhaufen am Südhimmel an der Grenze des Sternbildes Winkelmaß (Norma) zum Sternbild Südliches Dreieck. Mit einer Entfernung von etwa 65 Mpc (210 Mio. Lichtjahre) ist er uns deutlich näher als der Coma-Haufen und daher der nächste bekannte reiche Galaxienhaufen. Seine mittlere Radialgeschwindigkeit beträgt 4870 km/s und korrespondiert mit einer Rotverschiebung von z=0,016. Die Galaxien sind aufgrund ihrer Entfernung von 200 Millionen Lichtjahren sehr lichtschwach. Um sie zu beobachten benötigt man schon ein größeres Teleskop. Obwohl der Galaxienhaufen gleichzeitig nahe und hell ist, kann er jedoch nur schwer beobachtet werden, da er in Richtung der Kante unseres Milchstraßensystems liegt, so dass er durch interstellaren Staub teilweise verdeckt wird und die Beobachtung durch die große Dichte an Vordergrundsternen zusätzlich erschwert wird. Er entzog sich daher lange Zeit größerer Aufmerksamkeit seitens der Astronomen. Das änderte sich, als eine Forschergruppe um Donald Lynden-Bell, die als „die sieben Samurai“ bekannt wurde, die Existenz eines Großen Attraktors postulierte, der die Bewegung aller Galaxien in der kosmischen Nachbarschaft beeinflusst und sich hinter der so genannten „Vermeidungszone“ (engl. zone of avoidance) in Richtung des Sternbildes Winkelmaß befinden müsste. Seit 1996 gilt der Norma-Galaxienhaufen als ein wesentlicher Bestandteil des Großen Attraktors und wird eingehend untersucht. Im Zentrum des Haufens befinden sich die beiden cD-Galaxien ESO137-6 (PGC 57612) und ESO 137-8 (PGC 57649).

Bild 12: Zentrum von Abell 3627 mit den Riesengalaxien ESO 137-6 und ESO 137-8

Shapley 1 (Sp-1;  PK 329+02.1) wird auch Fine-Ring Nebula genannt. Es handelt sich um einen selten schönen, gleichförmigen 12m6 hellen Ringnebel mit einer Winkelausdehnung von 1,1´, was unter Berücksichtigung der Entfernung einem Durchmesser von einem Drittel Lichtjahr entspricht. Im Zentrum befindet sich ein Doppelsternsystem mit einer Umlaufdauer von 2,9 Tagen.

Shapley-1 steht auf der Position RA 15h51m42,7s / Dec -51°31´30,5“ in 1000 Lichtjahren Entfernung. Sein Zentralstern ist ein Zwerg mit einer Helligkeit von 14m0. Er wurde 1936 von Harlow Shapley entdeckt.

Bild 13: Planetarischer Nebel Shapley-1

Menzel-1, (Mz-1). Der bipolare Nebel wurde 1922 von Donald Howard Menzel auf Fotografien des Bruce-24-inch-Teleskops an der Außenstation des Harvard-College-Observatorium in Arequipa in Peru entdeckt. Trotz seiner vergleichsweisen hohen Helligkeit von 12m0 wurde er nur selten eingehender untersucht. Ein Modell erklärt seine Struktur anhand der Projektion einer dreidimensionalen Sanduhr-förmigen Hülle mit einer von der Taille zu den Polen abnehmenden Dichte. Seine Winkelausdehnung beträgt 76“ x 23“ auf der Position RA 15h34m17s / Dec -59°09´09“. Mit einer radialen Ausdehnungsgeschwindigkeit von 23 km/s wird sein Alter auf 4.500 bis 10.000 Jahre geschätzt. Man geht bei dem Zentralstern, einem weißen Zwerg, von 0,63 ±0,05 M aus. Die Entfernung zu uns beträgt 3400 Lichtjahre.

Bild 14: Der bipolare Nebel Menzel-1

Hen 2-161 (PK331-02.2) ist ein weiterer bipolarer Nebel. Er befindet sich auf der Position RA 16h24m37,7s / Dec -53°22´34,1“ und wurde erst 1967 von Karl Gordon Henize entdeckt.

Bild 15: Der bipolare Nebel Henize 2-161

2.3 Sonstiges

Literaturhinweise:

  • Taschenatlas der Sternbilder                  Klepesta, I. / Rükl, A.
  • Karte Südlicher Sternenhimmel            div. Autoren
  • Lexikon der Symbole                                    Becker,U.

Quellenangaben der Abbildungen:

  • Bild 01:   Phoenixmasony Datei:masonic framing square 6.jpg
  • Bild 02:   Creativcommons.org/licenses/by-sa/3.0/   Approved for Free Cultural Works
  • Bild 03:   Vorstellung der Gestirne J.E.Bode Tafel XXIX: Die südlichen Gestirne nach de Lacaille
  • Bild 04:   Ausschnittvergößerung aus Bild 03
  • Bild 05:   https://www.iau.org/static/public/constellations//gif/NOR.gif
  • Bild 06:   from Wikimedia Commons, the free media repository
  • Bild 07:   www.wikiwand.com upload.wikimedia.org/wikipedia/commons/Thumb/5/NASA/ESA HubbleSpaceTelescope STScl-PR C 2001-5
  • Bild 08:   Astrosurf.com Antilhue ngc 6134.htm
  • Bild 09:   Ausschnittvergrößerung aus https://www.starobserver.org/Image/1603/NGC6188
  • Bild 10: Attribution-ShareAlike 3.0 unported (CC BY-SA3.0) Approved for Free Cultural Works
  • Bild 11: Wikipedia org. R. Mura Attribution-ShareAlike 3.0 (CC BY-SA3.0) Approved for Free Cultural Works
  • Bild 12: ESO- http://www.eso.org/public/Images/eso9954c/ Attribution 4.0 International (CCBY 4.0)   Approved for Free Cultural Works
  • Bild 13: ESO – http://www.eso.org/public/images/potw1131a/  NTT La Silla Obs. Chile
  • Bild 14: Ausschnitt Format 13×18 aus CC –Lizenz „Namensnennung 4.0 International“ ESO Fabian RRRR File Menzel 1- EFOS 2003-02-04T 08 59  53.985.png
  • Bild 15: Ausschnitt Format 13×18 aus Attribution 2.0 Generic (CC BY 2.0) Judy Schmidt Flickr Hen 2-161  Approved for Free Cultural Works

               

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Musca – Fliege

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

„Fliegen sind doch recht nervige Viecher, die nicht nur den meisten Menschen sondern auch so manchem Tier echt auf den Keks gehen. Und so´n Biest ist als Sternbild am Himmel?“ Wie oft habe ich diesen Satz oder ähnliche Äußerungen gehört, wenn ich das Sternbild Musca mit seinem deutschen Namen – Fliege – bei einem meiner Vorträge an der Sternwarte zu Lübeck erwähnte. Die uns bekannte Stubenfliege (Musca domestica) ist eine Art aus der Gattung Musca, die wiederum zur Familie der Echten Fliegen (Muscidae) gehört.

Bild 01: Hausfliege – Musca domestica

Es gab eine Zeit, da existierten zwei Sternkonstellationen mit dem Namen Fliege.

Die nördliche Fliege, lateinisch musca borealis, war kein Sternbild des Nordhimmels sondern  eine kleine Sterngruppe im östlichen Teil des offiziellen Sternbildes Widder angrenzend an die Sternbilder Dreieck und Perseus, ähnlich in der Art, wie die Plejaden dem Sternbild Stier angehören. Hauptstern war der Stern 41 Arietis mit dem Eigennamen Bharani. Jacob Bartsch, Schwiegersohn von Johannes Kepler, benannte 1624 diese Sternengruppe aber  in Vespa (Vespa) = Wespe um, weil Johann Bayer 1603 auch eine Biene (Biene) = Apis am Südhimmel eingeführt hatte, die heutige Fliege. Wie aus der Wespe eine nördliche Fliege wurde, ist nicht näher beschrieben. Sie erscheint jedenfalls 1687 bei Johannes Hevelius in dessen Atlas. Der Franzose Ignace-Gaston Pardies bildete aus denselben Sternen im Jahr 1674 das Sternbild Lilium, die französische Lilie, welches sich aber nicht behaupten konnte. Nach den 1782 erschienenen Atlanten von Johann Elert Bodes tritt die nördliche Fliege aber nicht mehr in Erscheinung.

Bild 02: Nördliche Fliege – Ausschnitt aus J. E. Bodes Sternatlas
Bild 03: Südliche Biene – Ausschnitt aus Bodes Uranographia

Die südliche Fliege existiert erst seit 1598, damals noch unter der Bezeichnung „de Bij“. 1595 bis 1597 vermaßen der niederländische Navigator Pieter Dierkzoon Keyser und der Kartograph Frederick de Houtman auf ihrer Fahrt zu den Gewürzinseln, heute Indonesien, im Auftrag von Peter Plantius den südlichen Sternenhimmel, damit dieser genauere Daten für seine Sternkarten erhalte. Dabei führten die Beiden 12 neue Sternbilder ein, darunter das Sternbild Apis = Biene.

1598 erscheint das Sternbild somit als Biene auf Sternkarten von Petrus Plancius, das 1600 von Jodocus Hondius auf einem von ihm veröffentlichten Himmelsglobus übernommen wurde. 1602/03 erschien die Biene auch auf Globen von Willem Janszoon Blaeu. Im Jahr 1629 gelang es diesem, zahlreiche Druckplatten aus dem Nachlass von Jodocus Hondius zu erwerben. Diese dienten ihm zur Herausgabe eines eigenen Atlas‘. Von den anfänglich 60 Karten stammten 37 aus dem Hondius-Nachlass. Auf allen Druckplatten ließ er den Namen Hondius durch den Namen Blaeu ersetzen.

1603 übernimmt Johann Bayer das südliche Sternbild Apis in seine Uranometria. Hier deutet er die Biene in religiösem Kontext als ein Insekt, das in der Geschichte von Samson erwähnt wird. Als Samson zum Jüngling herangewachsen war, verließ er die heimatlichen Berge und besuchte die Städte der Philister. Dort verliebte sich Samson in die Tochter eines Philisters aus Timna. Er überwand die Einwände seiner Eltern und durfte die Frau heiraten. Auf dem Weg zur Brautwerbung nach Timna entfernt sich Samson von der Begleitung seiner Eltern. Er begegnet einem Löwen: „Da kam der Geist des Herrn über Simson, und Simson zerriss den Löwen mit bloßen Händen, als würde er ein Böckchen zerreißen“.  Er findet im Kadaver einen Bienenstock; er nimmt vom Honig und teilt ihn mit seinen Eltern, ohne dessen Herkunft zu verraten.

Johann Bayer bediente sich zur Erstellung seiner astronomischen Veröffentlichungen mehrerer Quellen. Die älteste war der Almagest von Ptolemäus. Daneben besaß er Aufzeichnungen des dänischen Astronomen Tycho Brahe, der über Jahre hinweg genaue Sternpositionen am Nordhimmel bestimmt hatte. Brahes Sternkatalog wurde erst 1602 in Druckform herausgegeben, jedoch waren zuvor handschriftliche Exemplare in Umlauf, von denen Bayer offensichtlich eines besaß. Daneben führte Bayer eigene Beobachtungen durch. Für den südlichen Sternhimmel bediente er sich der Aufzeichnungen des niederländischen Navigators Pieter Dirkszoon Keyser und von Pedro de Medina.

1752 benannte Nicolas Louis de Lacaille auf seiner 1756 veröffentlichten Planisphere des Étoiles Australes das Sternbild in La Mouche um, latinisiert Musca auf dem Coelum Australe Stelliferum, welcher erst postum 1763 veröffentlicht wurde. Später heißt sie auch Musca Australis in Abgrenzung zur Musca Borealis im Widder nach Johannes Hevelius, die, wie oben beschrieben, auf Keysers und de Houtmans Biene zurückgeht.

Als die nördliche Fliege aus den Atlanten verschwand, wurde aus der südlichen Fliege (Musca Australis) schlicht Fliege = Musca.

2 Das Sternbild

Musca     Genitiv: Muscae     Abk.: Mus     dt.: Fliege

Die Fliege ist ein kleines, aber gut erkennbares Sternbild direkt südlich des Kreuzes des Südens. Sie enthält einen auffälligen Stern 2. Größe und ein kompaktes Trapez aus nur wenig schwächeren Sternen. Durch das Sternbild zieht sich das Band der Milchstraße. Auffällig ist eine ausgedehnte Dunkelwolke, der Kohlensack, dessen südlicher Teil in die Fliege hineinragt. Im Prismenfernglas bietet die Himmelsregion um die Fliege einen prächtigen Anblick. Um diesen zu genießen, muss man sich aber bis zum 14ten Breitengrad nach Süden begeben. Erst von da ab ist es vollständig sichtbar; es kulminiert um den 31. März um Mitternacht. Seine Fläche von 138 Quadratgrad erstreckt sich in RA von 11h19m26s bis nach 13h51m08s und in Dec von -75°41´46“ bis auf -64°38´17“ hoch. Seine Nachbarn sind von Nord im Uhrzeigersinn Kreuz des Südens, Centaur, Schiffkiel, Chamäleon, Paradiesvogel und Zirkel. Das kleine Sternbild beherbergt mehrere helle Sterne, jedoch ohne Eigennamen, und mehrere interessante Objekte.

Bild 04: Sternfeld Fliege, Kreuz des Südens, Schiffskiel © T. Credner & S. Kohle, AlltheSky.com

2.1 Die Sterne

α Mus ist mit 2m69 der hellste Stern. Er gehört der Spektralklasse B2IV-V an und sein bläuliches Licht kommt von einer rund 23.000 K heißen Photosphäre aus der Position α 12h37m08s / δ -69°08´7,9“ und über eine Distanz von 306 Lichtjahren zu uns. α Muscae ist ein blauer Überriese mit der 20.000fachen Leuchtkraft unserer Sonne und pulsiert leicht, wobei sich seine Helligkeit über einen Zeitraum von nur 2 Stunden und 12 Minuten um etwa 1 % verändert. Er gehört zum Typ der Cepheiden.  In einem Abstand von 2600 AU befindet sich ein 12m8 lichtschwacher Begleitstern in einem Winkelabstand von 29,6“, der ihn in 45.000 Jahren einmal umkreist.

β Mus hat eine Gesamthelligkeit von 3m04 und sein bläuliches Licht verrät uns einen B2V-Spektraltypen mit 24.000 K Oberflächentemperatur. Es erreicht uns erst nach 311 Jahren Reisezeit bei einer Ausgangsposition von α 12h46m16,9s / δ -68°06´29,1“. β Muscae ist auch ein Doppelsternsystem. Die beiden Komponenten, 3m7und4m0 hell,  gehören den Spektralklassen B2 und B3 an. Um das System in Einzelsterne aufzulösen, benötigt man ein mittleres Teleskop, da der Winkelabstand nur 1,4“ beträgt.

γ Mus ist mit 3m84 erst fünfthellster Fliegenstern, aber auch er ist ein bläulich leuchtender B5V-Spektraltyp mit rund 20.000 K Oberflächentemperatur. Seine Position ist α 12h32m28,1s / δ -72°07´58,7“. Von dort braucht das Licht 324 Jahre bis zu uns.

δ Mus gehört zur Spektralklasse K2III mit einer Oberflächentemperatur von rund 4500 K und leuchtet in orange 3m61 hell über eine Entfernung von 91 Lichtjahren von der Position α 13h02m15,8s / δ -71°32´55,7“.

ε Mus steht auf der Position α 12h17m34.6s / δ -67°57´38,4“ und leuchtet variabel als halbregelmäßig Veränderlicher mit einer Periode von 40 Tagen zwischen 4m0 und 4m3 als M5III-Stern in orangerot von der rund 3000 K heißen Sternoberfläche eines Riesensterns über eine Entfernung von 302 Lichtjahren.

μ und λ Mus bilden einen weiten optischen Doppelstern im Nordosten des Sternbildes Fliege. My ist mit 4m75 der lichtschwächere, zur Spektralklasse K4III gehörende Stern in 432 Lichtjahren Entfernung, während Lambda mit 3m6 nicht nur deutlich heller, sonders als A7III-Typ mit 8500 K auch wesentlich heißer ist und mit 128 Lichtjahren auch einen deutlich geringeren Abstand zu uns hat. Stellt man ihre mittlere Position von α 11h46m54,9s / δ -66°45´19,2“ im Teleskop ein, kann man den schönen orangerot / weißen Farbkontrast beider Sterne genießen.

η Mus befindet sich auf der Position α 13h15m15s / δ -67°53´40,4“, leuchtet bläulich mit 4m8 von der 14.000 K heißen Photosphäre eines B8V-Sterns aus 406 Lichtjahren Entfernung.

Nova Muscae 1991 (GU Muscae, GRS 1124-683) 1991 flammte im östlichen Teil des Sternbildes nahe der Grenze zum Chamäleon eine Nova auf. (Es folgt: Zitat aus https://interstellarium.com/de/astronomie/sternbilder/fliege/)

Nova Muscae 1991 ist ein binäres System, das einen Schwarzlochkandidaten enthält. Es ist eines der wenigen Schwarzlochsysteme, die als Röntgen-Novae klassifiziert sind, die gelegentlich Ausbrüche von Röntgenstrahlen zusammen mit sichtbarem Licht und anderen Energieformen erzeugen. Die beiden Sterne umkreisen sich mit einem Zeitraum von 10,4 Stunden und liegen etwa 3,2 Millionen Kilometer auseinander. In einem System wie diesem zieht das schwarze Loch Gas von der Oberfläche des Begleitsterns, und das Gas bildet eine Akkretionsscheibe um das schwarze Loch. Im Falle einer Röntgen-Nova ist der Gasstrom recht langsam und dünn, und die Scheibe um das Schwarze Loch bleibt relativ kühl. Ein Teil des Gases fällt auch in das schwarze Loch. Das Schwarze Loch in Nova Muscae 1991 hat die siebenfache Sonnenmasse, während der Begleitstern drei Viertel der Sonnenmasse und ein Drittel der Sonnenhelligkeit hat. Die äußeren Schichten des Sterns wurden wahrscheinlich durch die Supernova-Explosion, die das Schwarze Loch verursachte, weggeblasen. (Zitatende)

2.2 Deep Sky Objekte

Der Kohlensack ist eine ausgedehnte Dunkelwolke in 600 Lichtjahren Entfernung. Er gehört aber überwiegend zum Sternbild Crux und ragt nur mit einem kleinen südlichen Teil in das Sternbild Fliege. Da der Kohlensack aber sehr markant ist, eignet er sich, ebenso wie das Kreuz des Südens, sehr gut zum Auffinden der Fliege. Seine mittlere Position ist RA 12h50m / Dec -62°30´. Es handelt sich hier um zwei sich überlagernde Dunkelwolken, deren vordere, wie oben bereits erwähnt, eine Entfernung von 600 Lichtjahren zu uns aufweist, während die hintere noch einmal 140 Lichtjahre tiefer im Raum steht. Die Gesamtwinkelausdehnung beträgt 7° x 5°, was etwa 70 x 50 Lichtjahren entspricht.

Bild 05: Der Kohlensack in Crux und Musca © T. Credner & S. Kohle, AlltheSky.com

NGC 4833 ist ein 7m4 heller Kugelsternhaufen in 19.000 Lichtjahren Entfernung. In einem mittleren Teleskop kann der Randbereich in Einzelsterne aufgelöst werden. Er befindet sich auf der Position RA 12h59m35s / Dec -70°52´28,6“ und hat eine Winkelausdehnung von 13,5 Bogenminuten und die Konzentrationsklasse VIII (Klassifizierungs-system nach Shapley-Sawyer für Kugelsternhaufen). Er wurde von Nicolas Louis de Lacaille am 17. März 1752 während seines Aufenthaltes in Kapstadt entdeckt. Zum Auffinden eignet sich der sehr nahe stehende helle Stern Delta Muscae.

Bild 06: Kugelsternhaufen NGC 4833

NGC 5189, ein 9m7 heller Planetarischer Nebel, ist die abgestoßene Gashülle eines Sterns in einer Entfernung von 2.600 Lichtjahren auf der Position RA 13h33m32,9s / Dec -65°58´26,6“. Der helle Teil des Nebels besitzt eine ungewöhnliche längliche, S-förmige Struktur, die bereits in einem kleinen Teleskop erkennbar ist. Der gesamte Nebel weist eine Winkelausdehnung  von 2,33´x 2,33´ auf. Der Zentralstern ist nur 20m0 lichtschwach und hat die Katalogbezeichnung HD117622. Dieses Leuchten erreicht uns nach 3.000 Jahren und wurde am 1. Juli 1826 von James Dunlop entdeckt.

Bild 07: Planetarischer Nebel NGC 5189

IC 4191 ist ein weiterer planetarischer Nebel im Sternbild Fliege, der im Jahr 1907 von der Astronomin Williamina Fleming entdeckt wurde. Seine heutigen Koordinaten sind: RA 13h8m47,5s / Dec -67°38´35“. Auch hier weist die Struktur der auseinander driftenden Gaswolken eine ungewöhnlich längliche Form auf. Um den Zentralstern befindet sich eine helle, noch dichte und dadurch scheinbar erst vor astronomisch kurzer Zeit abgestoßene Hülle.

NGC 4372 zählt mit 8m0 zu den hellen Kugelsternhaufen und liegt an der „Musca Dark Cloud“, auf Deutsch: Musca-Dunkelwolke. NGC 4372 gehört der inneren galaktischen Scheibe an. Nach Harris (2003) ist er 23.000 Lj vom galaktischen Zentrum entfernt und 19.500 Lj vom Sonnensystem. Seine Ausdehnung ist schwer abzuschätzen, weil die Fülle der Milchstraßensterne kaum die Außengrenze erahnen lässt. Kukarkin (1974) gibt 18,6′ an. Damit lässt sich ein echter Durchmesser um 100 Lj berechnen, was bei Kugelsternhaufen im Durchschnitt gut passt. NGC 4372 ist einzigartig, weil er (im Gegensatz zu den meisten anderen Kugelsternhaufen) nur eine Sternpopulation enthält, die dazu noch sehr metallarm ist. In seiner Nähe befindet sich der helle Stern Gamma Muscae.

Bild 08: Kugelsternhaufen NGC 4372 und Staubschleier der Musca-Dunkelwolke 

2.3 Sonstiges

Bild 09: Das Sternbild Musca – Fliege

Literaturhinweise:

  • Internet Astronomie.de                                          Anette u. Holger Manz
  • Vorstellung der Gestirne/Himmelsatlas       Johann Ehlert Bode
  • Sternbilder von A – Z                                                Antonin Rükl
  • Die großen Sternbilder                                            Ian Ridpath
  • POLARIS z. B. Nr. 103, 114                                     E.-Günter Bröckels
  • Taschenatlas der Sternbilder                  Josef Klepesta/Antonin Rükl

Quellenangaben der Abbildungen:

  • Bild 01: https:www.flickr.com/photos/usdagov/8674435033/sizes/o/in/photostream/Wikimedia Commons, public domain
  • Bild 02: J. E. Bodes Sternatlas 1782 Vorstellung der Gestirne auf  XXXII Tafeln, Replik; Ausschnitt aus Tafel XIV  Sternbildgrenzen nachcoloriert
  • Bild 03: Ausschnitt aus J. E. Bodes Uranographia M DC XXXXVIII (1648) Bild Nr. 29 Nachdruck 1801 Berlin, Deutsches Museum München  urn.nbn.de:bvb:210-03-001560890-5
  • Bild 04: https://www.allthesky.com/constellations/crux/big.jpg; Cerro Tololo, S. Kohle, T. Credner Allthesky.com
  • Bild 05: https://www.allthesky.com/constellations/cru135-d.html
  • Bild 06: https://cdn.spacetelescpe.org/archives/images/screen/potw1651a.jpg; ESA/hubble and NASA
  • Bild 07: Wikimedia Commons  https://dewiki.de/b/11308e; NASA, ESA and the Hubble Heritage Team (STScl/AURA)
  • Bild 08: https://www.astronomie.de/aktuelles-und-neuigkeiten/astrofoto-der-woche/kurzübersicht-archiv/detailseite/28-woche-deep-sky-im-Sternbil-musca/Anette und Holger Manz
  • Bild 09: Ausschnittvergrößerung aus Sternbilder von A-Z, Seite 153  ISBN 3-7684-2859-1

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Indus – Ind(ian)er

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das Sternbild Inder ist ein nur sehr mäßig ausgeprägtes Sternbild am südlichen Himmel. Als neuzeitliches Sternbild hat es keine klassische Mythologie. Nur zwei seiner Sterne sind heller als die 4. Größenklasse. Mit diesem Sternbild sollen keinesfalls die amerikanischen Indianer verstirnt werden sondern die Eingeborenen der indischen Gewürzinseln. Auf der ersten niederländischen Ostindienexpedition Ende des 16. Jahrhunderts durch den Indischen Ozean hatte der Navigator Pieter Dirkszoon Keyser von dem Kartografen Petrus Plancius den Auftrag, die Positionen der hellen Sterne des Südhimmels zu vermessen und legte dabei, unterstützt von dem Forscher Frederick de Houtman, einschließlich des Inders – „De Indiaen“ – insgesamt zwölf neue Sternbilder fest. Aus Sicht der Holländer auf dieser Forschungsreise waren die Bewohner der Gewürzinseln allesamt „Inder“. Somit hat Pieter Dirkszoon Keyser bei der Benennung des Sternbilds die Bewohner Indiens gemeint und nicht, wie schon erwähnt, die Ureinwohner des amerikanischen Kontinents. Mit letzteren hatte schon der Isländer Leif Erikson um 1000 unserer Zeit Kontakte. Als Christobal Colombo 1492 auf San Salvador und 7 Jahre später Amerigo Vespucci auf dem echten amerikanischen Kontinent landete, hatten sie Kontakte zu Menschen, die sie anfangs „Inder“ nannten. Nach unbestätigten Reiseberichten des Ferdinand Magellan brachte dieser erste Eingeborene aus Patagonien – Feuerland – mit nach Europa. Die Namengebung zu diesem Sternbild kam den Niederländern jedoch, wie oben erwähnt, auf ihren Ostindienreisen. Plancius übernahm sie 1597/1598 erstmals auf einen Himmelsglobus, der 1600 von dem Kartograf und Verleger Jodocus Hondius veröffentlicht wurde. Auf diesem glich die illustrierende Darstellung des „Indus“ dem Bild von einem eingeborenen Südasiaten. Johann Bayer übernahm die zwölf neuen Sternbilder in seinen 1603 erschienenen HimmelsatlasUranometria. Hier erscheint das Sternbild Indus als ein kurz gelockter Jüngling mit Lendentuch, der vier Pfeile in den Händen trägt. In dieser Weise wird es auch in späteren Himmelsatlanten und Sternkarten dargestellt wie in dem von Johannes Hevelius aus dem Jahr 1690. Hier ist der „Indus“ als ein Naturvolkangehöriger ohne Federschmuck dargestellt, mit einem Speer in der einen und drei weiteren in der anderen Hand. Die Federhaube eines amerikanischen Indianers tauchte erst auf Sternkarten und Himmelsgloben in der 1. Hälfte des 18. Jahrhunderts auf. Im Französischen heißt das Sternbild „le Indien“, im Englischen „Indian“ und im Deutschen „Inder“. In jüngerer Zeit hat sich unter amerikanischem Einfluss die falsche Bezeichnung „Indianer“ eingeschlichen.

Bild 01: Indus auf Johann Gabriel Doppelmayrs Sternkarte des südlichen Himmels von 1730
Bild 02: Prodomus Astronomia Volume III Firmamentum Sobiescianum, sive Uranographia von Johann Hevelius 1690

2 Das Sternbild

Indus     Genitiv: Indi     Abk.: Ind     dt.: Inder

Das Sternbild Indus liegt zwischen den auffällig hellen Sternen Alpha Gruis Alnar und Alpha Pavonis Peacock. Sein Areal erstreckt sich in Rektaszension von 20h28m41s bis 23h27m59s und in Deklination von -74°27´16“ bis hinauf nach -44°57´32“ und belegt wegen mehrfacher Ein- und Ausbuchtungen 294 Quadratgrad am Himmel. Seine Nachbarn sind von Norden im Sinne des Sonnenlaufs die Sternbilder Mikroskop, Schütze, Teleskop, Pfau, Oktant, Tukan und Kranich. Wegen seiner noch sehr südlichen Nordgrenze ist dieses Sternbild von Mitteleuropa unsichtbar und erst ab dem 16ten Breitengrad vollständig sichtbar. Es kulminiert um den 13ten August zu Mitternacht. Die Hilfslinien zur figuralen Darstellung sind auf einigen modernen Sternkarten falsch eingezeichnet und befinden sich dort überwiegend außerhalb der „indischen“ Sternbildgrenzen.

Bild 03: Sternbild Indus mit falschen Hilfslinien
Bild 04: Sternbild Indus mit Nachbarsternbildern

2.1 Die Sterne

α Ind, der mit 3m11 hellste Stern im Inder, ist ein 120 Lichtjahre entfernter Stern der Spektralklasse K0 III-IV, der den Wasserstoff in seinem Kern erschöpft hat und sich von der Hauptreihe des HRD zum Riesenstern entwickelt hat. Sein Name Alnair ist arabischen Ursprungs und bedeutet „der Erleuchtete“. Diesen Namen trägt auch der Stern α Gruis im Sternbild Kranich. In China wird dieser Stern Pe Sze, „der zweite Stern von Persien“ genannt, eine dort von den Jesuiten-Missionaren eingeführte Bezeichnung. α Indi hat etwa die doppelte Masse der Sonne und ist geschätzt eine Milliarde Jahre alt. Er hat sich auf das 6-fache des Sonnendurchmessers ausgedehnt. Die effektive Temperatur der Photosphäre beträgt 4.900 K, was ihm den charakteristischen orangen Farbton verleiht. Er wird von zwei M-Typen begleitet, die mindestens 2.000 Astronomische Einheiten vom Hauptstern entfernt sind.

β Ind ist 3m67 hell und gehört als Riesenstern mit 4.400 K an der Photosphäre der Spektralklasse K1 III an. β Indi hat einen visuellen Companion mit der Bezeichnung CCDM J20548-5827B und einer scheinbaren Helligkeit von nur 12m5. Sein orange-rötliches Licht kommt von der Position α 20h54m48s / δ -58°27´15“ über eine Entfernung von 600 Lichtjahren zu uns.

γ Ind ist mit nur 6m1 mit dem bloßen Auge nicht mehr sichtbar.

δ Ind  ist ein Doppelsternsystem mit der Gesamthelligkeit von 4m4. Die Primärkomponente hat eine Helligkeit von 4m8, während die Komponente B eine solche von 5m96 hat. Das System auf der Position  α 21h57m55s /  δ -54°59´33“ stehend ist etwa 188 Lichtjahre von der Sonne entfernt. Die binäre Natur dieses Systems wurde vom südafrikanischen Astronomen William Stephen Finsen 1936 entdeckt. Das Paar hat eine Umlaufzeit von 12,2 Jahren, eine Halbachse von 0,176 Bogensekunden und eine Exzentrizität von etwa 0,03. Beide Komponenten wurden von mehreren Autoren mit einer Sternklassifikation von F0 IV aufgeführt, was darauf hindeutet, dass es sich um gelb-weiß gefärbte Unterriesen handelt.

ε Ind ist mit 11,82 Lichtjahren Entfernung einer der nächsten Nachbarn der Sonne. Bei einer scheinbaren Helligkeit von 4m69  ist der Stern noch freiäugig zu erkennen. Epsilon Indi A gehört zur Spektralklasse K4-5V mit einer Oberflächentemperatur von 4.450 K. Sein Alter wird auf 1,3 Milliarden Jahre geschätzt. Er ist nach Barnards Pfeilstern und Kapteyns Stern der Fixstern mit der drittgrößten Eigenbewegung. Sie beträgt 4,7 Bogensekunden pro Jahr – das entspricht etwa einem Monddurchmesser in 400 Jahren. In rund 1000 Jahren wird das Sternsystem ins benachbarte Sternbild Tukan hinüberwechseln. In den Jahren 2002 und 2003 wurde Epsilon Indi als Mehrfachsystem erkannt. Auf der Suche nach Planeten außerhalb unseres Sonnensystems fanden Astronomen zwei sich gegenseitig umkreisende Braune Zwerge im Abstand von 1200 AE zur Hauptkomponente. 2002 wurde der mit 23m6 etwas hellere Epsilon Indi B gefunden, der zur Spektralklasse T1V mit einer Oberflächentemperatur von 1200 K gehört und etwa 50 Jupitermassen aufweist. Ein Jahr später wurde der mit 31m3 leuchtschwächere Epsilon Indi C gefunden, der der Spektralklasse T6V angehört, eine Oberflächentemperatur von nur 850 K und etwa 30 Jupitermassen aufweist. Der Abstand der beiden Komponenten B und C beträgt etwa 2,1 AE; beide haben einen Durchmesser, der etwa dem des Planeten Jupiter entspricht. Dieses Mehrfachsystem befindet sich bei α 22h03m21,7s / δ -56°47´10“.

ζ Ind ist mit 4m9 auf der Position α 20h49m29s / δ -46°13´36,6“ der nördlichste mit bloßem Auge sichtbare Stern im Indus. Er gehört der Spektralklasse K5III an, ist 4.000 K heiß und sein Licht braucht bis zu uns 410 Jahre.

η Ind steht mittig auf einer Verbindungslinie von Alpha nach Beta auf der Position α 20h44m02,3s / δ -51°55´15,5“ und leuchtet dort weiß als Unterriese mit 4m2 von der 7.700 K heißen Oberfläche eines A9IV-Spektraltyps über eine Entfernung von 78,8 Lichtjahren.

θ Ind ist ein 100 Lichtjahre entferntes Doppelsternsystem. Die beiden 4m5 und 6m9 weiß leuchtenden Komponenten der Spektralklassen A5 und A7 können bei einem gegenseitigen Abstand von 6,7 Bogensekunden schon mit einem kleinen Teleskop getrennt werden.

2.2 Deep Sky Objekte

Im Inder befinden sich sehr viele Galaxien. Die meisten von ihnen sind jedoch nur den Großteleskopen zugänglich, weil sie einerseits sehr kleine Flächenhelligkeiten haben und mehrere 10 bis 100 Millionen Lichtjahre entfernt sind. Zu den helleren gehören NGC 7049, NGC 7090, NGC 7205 und IC 5152.

NGC 7049 ist die Bezeichnung einer SA(s)-Galaxie im Sternbild Indus. Sie wurde schon am 4. August 1826 von dem schottischen Astronomen James Dunlop entdeckt, aber erst später im New General Catalogue verzeichnet. NGC 7049 hat eine scheinbare visuelle Helligkeit von 10m6 und, bei einer Winkelausdehnung von 4,4′ × 2,9′, eine Flächenhelligkeit von 13m3. Sie ist jedoch aufgrund ihrer Position RA 21h19m0,3s und Dec −48° 33′ 43″ zu weit südlich, um von Mitteleuropa aus beobachtet werden zu können. Eine Aufnahme in eine Raumtiefe von 94 Millionen Lichtjahren mittels des Hubble-Weltraumteleskops zeigt ihr Aussehen im sichtbaren Licht, das einen ungewöhnlichen Staubring erkennen lässt.

Bild 05: NGC 7049  HST

NGC 7090 ist eine Balkenspiralgalaxie vom Hubble-Typ SBc im Indus. Sie hat eine scheinbare Helligkeit von 10m7 und, bei einer Winkelausdehnung von 7,8′ × 1,53′, eine Flächenhelligkeit von 12m9. Bei dem Objekt handelt es sich um eine sogenannte Edge-On-Galaxie, d. h. wir sehen sie genau in Kantenstellung auf der Position RA 21h36m24,3s / Dec -54°33´24,3“. Die Spiralarme erscheinen hier nur als dunkle staubhaltige Wolken, beleuchtet vom hellen Zentrum der Galaxie. Auf dem HST-Foto sind auch viele leuchtende Wasserstoffgebiete zu erkennen, in denen Sternengeburten stattfinden. Das Objekt wurde am 4. Oktober 1834 vom britischen Astronomen John Herschel entdeckt.

Bild 06: NGC 7090 vom HST

NGC 7205 ist eine Spiralgalaxie vom Hubbletyp SA(s)bcHII mit einem sehr kleinen, hellen Kern und ausgeprägten Staubstreifen zwischen den Spiralarmen. Sie liegt auf der Position RA 22h08m34,4s / Dec -57°26´33“ und somit auf der Grenze zum Sternbild Tukan. Ihre visuelle Helligkeit von 10m8 ergibt bei einer Winkelausdehnung von 3,55´x 1,95´ einen realen Durchmesser von 90.000 Lichtjahren und eine Flächenhelligkeit von 12m9. Ihre Photonen erreichen uns nach 80 Millionen Jahren. NGC 7205 wurde am 10. Juli 1834 von John Herschel entdeckt. Sie hat zwei Begleitgalaxien, die Spiralgalaxie NGC 7205 A und die scheinbar irreguläre Galaxie PGC 388132.

NGC 7205A steht auf der Position RA 22h07m31s / Dec -57°27´43,2“ und hat eine Gesamthelligkeit von 15m15.

PGC 388132 befindet sich auf der Position RA 22h08m28,9s / Dec -57°55´44“ und hat eine Winkelausdehnung von 0,76´ x 0,41´. Sie ist nur Großteleskopen und Photonenjägern zugänglich.

IC 5152 ist die Bezeichnung einer irregulären Galaxie im Sternbild Inder und wurde im Jahr 1908 von dem Astronomen DeLisle Stewart entdeckt. Ihre Position ist RA 22h03m00s / Dec -51°17´00“, sie steht  5,8 Millionen Lichtjahre tief im Raum und  gehört trotz dieser Entfernung zu den Galaxien, deren einzelne Sterne am leichtesten aufgelöst und beobachtet werden können. Es ist eine offene Frage, ob IC 5152 noch als entferntes Mitglied zur lokalen Gruppe gehört.

Bild 07: IC5152 Detailaufnahme vom HST

2.3 Sonstiges

Literaturhinweise:

  • Internet, Wikipedia                                                      div. Autoren
  • Der große Kosmos-Himmelführer                      I. Ridpath / W. Tirion
  • Internet Astronomie.de                                             G. Bendt
  • Wikimedia Commons                                                  div. Autoren
  • Taschenatlas der Sternbilder                                  J. Klepesta,  A. Rükl
  • Wikimedia.org                                                                 div. Autoren

Quellenangaben der Abbildungen:

  • Bild 01: Darstellung des Pavo und Indus auf Johann Gabriel Doppelmeyr’s Sternkarte des südlichen Himmels von 1730 – Reproduktion, gemeinfrei
  • Bild 02: Wikipedia Datei: Johannes Hevelius – “Firmamentum Sobiescianum sive Uranometria” Tavola Emisfero Australe 1690, Replik, gemeinfrei
  • Bild 03: aus Wikimedia Commons, the free media repository  Creativ Commons Attribution Share Alike 3.0 T. Bronger  Free Software Foundation CCBYSA3.0
  • Bild 04: IAU Constellations
  • Bild 05: from Wikipedia, the free encyclopedia NGC 7049 – image from the HST´s Advanced Camera for Surveys
  • Bild 06: ESA/Hubble & NASA Acknowledgement R. Tugral,  gemeinfrei
  • Bild 07: Wikipedia, the free encyclopedia – IC 5152 by the Hubble Space Telescope

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Triangulum Australe – Südliches Dreieck

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Dieses Sternbild ist, wie sein Name schon andeutet, am südlichen Sternenhimmel zu Hause. Das Sternbild setzt sich aus drei hellen Sternen zusammen und ist daher auch auffälliger als sein nördliches Gegenstück, das Dreieck. Als Urheber des Sternbildes werden der niederländische Navigator Pieter Dirkszoon Keyser und sein Helfer Frederick de Houtman genannt, die 1595–97 im Auftrag von Petrus Plancius den südlichen Himmel vermaßen. Beschrieben wurde es bereits 1500 von einem spanischen Navigator genannt Mestre João. Auch der italienische Seefahrer und Entdecker Amerigo Vespucci erwähnt diese auffällige Sternenkonstellation im Bericht über seine zweite Reise von 1502. Schon 1589 findet sich das südliche Dreieck auf einem Himmelsglobus des Petrus Plancius. Tatsächlich steht es dort aber auf dem Kopf, weil er hierfür Berichte von Forschungsreisenden, namentlich Andreas Corsal und Pedro de Medina, verwendete aber keine genaueren Koordinaten hatte. Erst auf dem Planciusschen Globus von 1598, der die Vermessungen von Keyser und de Houtman umsetzt, stellt es sich richtig dar. Von Letzteren übernahm Johann Bayer das südliche Dreieck in seinen 1603 erschienenen Himmelsatlas Uranometria. Er wird aufgrund der maßgeblichen Bedeutung seines Werkes in älteren Schriften auch als Sternbildautor angegeben.

Zur Bedeutung des Dreiecks als geometrische oder mathematische Figur und als Symbol unterschiedlichster Genese siehe die Sternbildbeschreibung Triangulum – Dreieck in der POLARIS 29.

2 Das Sternbild

Triangulum Australe     Genitiv: Trianguli Australis     Abk.: TrA       dt.: südliches Dreieck

Von Mitteleuropa aus ist das Südliche Dreieck unsichtbar. Eine richtige, vollständige Beobachtung wird erst südlich des nördlichen Wendekreises, also südlich von 19° bis 90° Süd möglich. Auf der Erde sind die Wendekreise die beiden Breitenkreise von je 23° 26′ 05″ nördlicher bzw. südlicher Breite. Auf ihnen steht die Sonne am Mittag des Tages der jeweiligen Sonnenwende im Zenit. Die Wendekreise haben vom Äquator je einen Abstand von 2609 km. Das südliche Dreieck nimmt am Himmel eine Fläche von 110 Quadratgrad ein und erstreckt sich in RA von 14h56m01s bis 17h13m53s und in Dec von  −70°30′42″ bis −60°15′52“. Umgeben ist es von den Nachbarsternbildern Winkelmaß, Zirkel, Paradiesvogel und Altar. Durch das Südliche Dreieck zieht sich das Band der Milchstraße.

Bild 01: Karte des Sternbilds Südliches Dreieck

2.1 Die Sterne

α TrA, mit 1m91 der hellste Stern im Triangulum Australe, ist etwa 405 Lichtjahre entfernt. Es handelt sich um einen orange leuchtenden Stern der Spektralklasse K2IIb-IIIa, mit der neunfachen Masse und der 2.000fachen Leuchtkraft unserer Sonne. Der nicht historische Eigenname Atria ist ein Kürzel für  Alpha Trianguli Australe. Er markiert die südwestliche Ecke des Dreiecks auf der Position α 16h 48m 39,9s / δ -69°01´39,8“.

β TrA hat den Kunstnamen Betria, steht auf der Position α 15h50m50s / δ -63°17´0“ und markiert die nördliche Ecke des Dreiecks mit einer Helligkeit von 2m83. Dieser Stern gehört zur Spektralklasse F0 und ist 42 Lichtjahre von uns entfernt.

γ TrA steht an der östlichen Ecke des Dreiecks auf der Position α 15h14m10s / δ -68°30´0“ und leuchtet dort mit 2m87 als A1V-Spektraltyp über eine Entfernung von 183 Lichtjahren.

δ TrA leuchtet gelb mit 3m86 als 5.000 K heißer G5II-Stern auf der Position α 16h15m26,3s / δ -63°41´08“. Sein Licht braucht bis zu uns rund 620 Lichtjahre. δ TrA ist ein optischer Doppelstern. Die Hauptkomponente wird von einem nur 12m0 hellen Stern in 30“ Abstand begleitet.

ε TrA steht mittig auf einer Verbindungslinie von Beta nach Gamma. Die Koordinaten lauten: α 15h36m43,2s / δ -66°19´01,3“. Dort sehen wir einen 4.400 K heißen Riesenstern der Spektralklasse K0III, der sein 4m11 helles Licht über eine Entfernung von 202 Lichtjahren zu uns sendet. Mit einem Begleiter von 9m36 Helligkeit in 81,9“ Abstand bildet er einen optischen Doppelstern.

2.2 Deep-Sky-Objekte

NGC 5844 ist ein 13m2 planetarischer Nebel auf der Position α 50h10m40,7s / δ -64°40´25“ mit einer Winkelausdehnung von  1,22 Bogenminuten und einer Entfernung von 1372 pc. Dieses Objekt wurde am 2. Mai 1835 von John Herschel entdeckt.

ESO 99-4 ist eine mit 16m4 nur Großteleskopen zugängliche, peculiäre Galaxie.  Ihre sehr eigentümliche Form rührt wahrscheinlich von einem früheren Verschmelzungsprozess her, durch den sie über die visuelle Erscheinung hinaus verformt wurde, wobei der Hauptkörper durch dunkle Staubstreifen weitgehend verdeckt wird. ESO 99-4 liegt  auf der Position α 15h24m59,4s / δ -63°07´37,4“ mit einer Winkelausdehnung von 1,0´ x 0,6´ in einem reichhaltigen Feld von Vordergrundsternen und ist etwa 395 Millionen Lichtjahre entfernt.

Bild 02: ESO 99-4 (Galaxienverschmelzung)

NGC 5979 ist ein weiterer planetarischer Nebel in diesem Sternbild. Er wurde am 25. April 1835 von J. F. W. Herschel entdeckt. Wir finden ihn auf der Position α 15h47m41s/ δ -61°13´05,6“. Der Nebel ist mit 11m5 visueller Helligkeit kein leichtes Beobachtungsobjekt und der Zentralstern hat sogar nur 20m0.

Bild 03: NGC 5979 (Planetarischer Nebel)

NGC 6025 ist ein offener Sternhaufen in etwa 2.700 Lichtjahren Entfernung. Er enthält etwa 60 Sterne, die heller als die 7. Größenklasse sind. Seine Gesamthelligkeit ist 5m1. Bereits im Prismenfernglas bietet er einen schönen Anblick. Er steht an der nördlichen Sternbildgrenze zum Winkelmaß auf der Position α 16h03m17s / δ 60°25´54“ und hat eine Ausdehnung von 12´ entsprechend 4,5 Lichtjahren. Sein Alter wird mit 80 Millionen Jahren angegeben. Entdeckt wurde er von Abbe de Lacaille 1751. Die Konstellation der helleren Sterne in diesem offenen Haufen hat eine Ähnlichkeit mit dem Sternbild Coma Berenice.

NGC 6156 ist eine Balkenspiralgalaxie vom Hubble-Typ SBc mit einer Helligkeit von 11m6 bei einer Entfernung von ca. 45 Millionen Lichtjahren. Ihre Koordinaten sind α 16h34m52,5s / δ -60°37´08″. Auf dieses schöne Feuerrad schauen wir direkt von oben und können in größeren Teleskopen sehr schön die Spiralarme um einen sehr kleinen Kern erkennen.

2.3 Sonstiges

Literaturhinweise:

  • POLARIS 29                                                                        E.-G. Bröckels et al.
  • Internet Wikipedia                                                         div. Autoren

Quellenangaben der Abbildungen:

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Das Sternbild Microscopium – Mikroskop

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das hier beschriebene Sternbild ist an einem sternlichtschwachen Teil des südlichen Sternenhimmels eingegliedert worden. Sein Dasein unter den Sternen verdankt es dem Einfallsreichtum des französischen Astronomen Nicolas Louis de La Caille, welcher auf diese Weise bedeutende Erfindungen seiner Zeit auf seinen 1752 bis 1756 gefertigten Karten des südlichen Sternenhimmels verewigte. Welche ungeheure Bedeutung gerade dieses Instrument für die Menschheit erlangen sollte, konnte er nur erahnen.

Bild 01: Das Sternbild Mikroskop auf einer mittelalterlichen Sternkarte

Angefangen hatte alles damit, dass ein holländischer Brillenschleifer aus Middelburg namens Hans Lippershey, oder eines seiner Kinder, per Zufall herausfand, dass zwei in einem bestimmten Abstand hintereinander in die Sichtlinie zu einem dahinter befindlichen Gegenstand gebrachte Linsen einen Vergrößerungseffekt auslösten. Am 25. September 1608 wurde von Lippershey für eine entsprechende Apparatur ein niederländisches Patent beantragt.

Zacharias Janssen (Sacharias Joanidis), ein griechischstämmiger, fähiger Optiker und Hausierer, ebenfalls aus Middelburg, reiste als Hausierer viel, betrieb  in Amsterdam eine Firma, die jedoch in Konkurs ging und war auch bekannt als Fälscher von Kupfer-, Gold- und Silbermünzen. Dadurch kam er öfter mit dem Gesetz in Konflikt und wurde auch verurteilt. Dieser Mann erfragte / beantragte im Oktober 1608 in den Niederlanden ebenfalls ein Patent für eine optische Vergrößerungsapparatur.

Kurze Zeit später wurde von Jacob Metius (echter Name Jacob Adriaansz), einem niederländischen Linsenschleifer und Instrumentenbauer, Anspruch auf das beantragte Patent erhoben. Lippershey demonstrierte seine Erfindung vor Moritz von Oranien, Graf von Nassau-Dillenburg und Kapitän-General der Vereinigten Land- und Seestreitkräfte, in Den Haag. Trotzdem erlangten weder er noch Janssen noch Metius ein Patent, da das Gerät zu einfach und zu leicht zu kopieren sei.

Janssen verkaufte seine Apparaturen als Mikroskope noch im gleichen Jahr auf einer Messe in Paris. Das erste Mikroskop Janssens war ein einfaches Rohr mit Linsen am Ende. Die Vergrößerung reichte von drei- bis neunmal.

Und so kam 1609 der italienische Astronom Galileo Galilei in den Besitz eines solchen Geräts, welches er zu einem der ersten leistungsfähigen Teleskope entwickelte. Noch 1609 kam Galileo Galilei mit einem von ihm selbst entworfenen und vom Instrumentenbauer nach seinen Plänen angefertigten Teleskop an die Öffentlichkeit.

Zacharias Janssens 1611 geborener Sohn, Johannes Zachariassen, sollte später unter Eid schwören, dass Hans Lippershey die Idee seines Vaters für das Teleskop gestohlen habe.

Nach Zacharias Janssen sind der Mondkrater Jansen und der Exoplanet Janssen benannt.

Ein Mikroskop (griechisch μικρός mikrós „klein“; σκοπεῖν skopeín „betrachten“) ist ein Gerät, das es erlaubt, Objekte stark vergrößert anzusehen oder bildlich darzustellen. Dabei handelt es sich meist um Objekte bzw. die Struktur von Objekten, deren Größe unterhalb des Auflösungsvermögens des menschlichen Auges liegt. Eine Technik, die ein Mikroskop einsetzt, wird als Mikroskopie bezeichnet. Mikroskope sind heute ein wichtiges, unverzichtbares Hilfsmittel in der Biologie, Medizin und den Materialwissenschaften. Die physikalischen Prinzipien, die für den Vergrößerungseffekt ausgenutzt werden, können sehr unterschiedlicher Natur sein. Die älteste bekannte Mikroskopietechnik ist die Lichtmikroskopie, die durch die Brillenschleifer oder Linsenmacher Hans und Zacharias Janssen aus den Niederlanden entwickelt wurde und bei der ein Objekt durch zwei oder mehr Glaslinsen beobachtet wird. Anfang des 17. Jahrhunderts erhielt das mit Objektiv und Okular ausgestattete Mikroskop in Anlehnung an das Wort „Teleskop“ seinen Namen. Die physikalisch maximal mögliche Auflösung eines klassischen Lichtmikroskops ist von der Wellenlänge des verwendeten Lichts abhängig und auf bestenfalls etwa 0,2 Mikrometer beschränkt. Diese Grenze wird als Abbe-Limit bezeichnet, da die zugrunde liegenden Gesetzmäßigkeiten Ende des 19. Jahrhunderts von Ernst Abbe beschrieben wurden. Mittlerweile sind jedoch einige Verfahren bekannt, mit denen diese Grenze überwunden werden kann.

Bild 02: Kasten-Lichtmikroskop , Optisches Institut Utzschneider & Fraunhofer 1820

2 Das Sternbild

Microscopium     Genitiv: Microscopii     Abk.: Mic     dt.: Mikroskop

Zum Auffinden bedient man sich zweckmäßig des Sternbildes Steinbock. Sein südlichster Stern, ω Cap, ist zwar auch nur 4m11 hell, aber der hellste Stern in dieser Gegend und direkt an der Sternbildgrenze zum Mikroskop, dessen Grenzen ein Areal ohne Ein- und Ausbuchtungen von 210 Quadratgrad einschließen – nämlich in RA von 20h27m362 bis 21h28m10s und in Dec von -45°05´24“ bis hoch auf -27°27´35“. Im Sommer lassen sich vom südlichen Mitteleuropa ab dem 45sten Breitengrad unterhalb des Steinbocks die nördlichsten Teile des Mikroskops erahnen bzw. bei exzellenter Horizontsicht beobachten. Seine Nachbarn sind von Nord im Uhrzeigersinn (auch Sonnenlauf) Capricornus, Sagittarius, Telescopium, Indus, Grus und Piscis Austrinus.

Bild 03: Das Sternbild Microscopium

2.1 Die Sterne

α Mic ist ein schon in mittleren Amateurteleskopen auflösbarer Doppelstern. Seine Gesamthelligkeit ist 4m9 und  strahlt aus 380 Lichtjahren Entfernung. Die Hauptkomponente variiert von 4m88 nach 4m94 und ist ein gelber Riesenstern mit dem Spektrum eines G8III-Typen, der im Abstand von 20,6“ von einem 10m0 hellen Stern begleitet wird. Seine Position ist α 20h49m58,1s / δ -33°46´47“.

β Mic ist mit 6m06 für das bloße Auge nicht mehr sichtbar.

γ Mic gehört als gelber Riese der Spektralklasse G8III an, ist 4m67 hell und 224 Lichtjahre von uns entfernt. Er hat im Abstand von 26“ einen nur 13m7 lichtschwachen sichtbaren Begleiter CCDM J21013-3215B auf der Position 94°. Wahrscheinlich ist dieser nicht gravitativ an Gamma Microscopii gebunden. γ Mic gehörte ursprünglich zum östlichen Nachbarn unter der damaligen Bezeichnung 1 Piscis Austrini. Die Pekuliargeschwindigkeit relativ zu seinen Nachbarsternen ist 1.2 km/s, daher wird er zur Ursa-Major-Bewegungsgruppe gezählt. Rückwärtsrechnungen haben ergeben das Gamma Microscopii vor etwa 3,8 Millionen Jahren das Sonnensystem in einer Entfernung von etwa 6 Lichtjahren passiert hat. Er müsste damals eine scheinbare Helligkeit von -3 gehabt haben und wäre damit heller als Sirius heute gewesen.

θ1 Mic besteht aus zwei Sternen mit den Helligkeiten 4m7 und 8m6, die sich in 2,8“ Abstand umkreisen und ihr Licht über eine Entfernung von ca. 200 Lichtjahren zu uns senden. Theta 1 steht im südwestlichen Sternbildareal auf der Position α 21h20m45,6s / δ -40°48´34,5“. Die Hauptkomponente ist ein A7-Spektraltyp dessen Licht zwischen 4m77 und 4m87 in 2,125 Tagen variiert und viele Metalllinien im Spektrum aufweist.

θ2 Mic ist ein engerer Doppelstern. Hier umkreisen sich ein 6m3- und ein 7m0-Stern im Abstand von nur 0,7“. Ihr Licht braucht bis zu uns 470 Jahre.

ε Mic ist 4m71 hell, steht in 165 Lichtjahren Entfernung und gehört der Spektralklasse A0V an.

AU Mic ist ein 12 Millionen Jahre alter roter Zwerg in 33 Lichtjahren Entfernung, der unregelmäßige Helligkeitsausbrüche zeigt. Er besitzt eine ausgedehnte Staub- und Trümmerscheibe, in der neuesten Forschungen zufolge eine Planetenentstehung vermutet wird.

2.2 Deep-Sky-Objekte

NGC 6923 ist eine mit 12m2 leuchtende Spiralgalaxie, mit ersten Anzeichen zur Umwandlung in eine Balkenspiralgalaxie, in einer Entfernung von 130 Millionen Lichtjahren. Sie wurde im Juli 1834 von Wilhelm Herschel entdeckt.

Bild 04: NGC 6923; Foto: The Carnegie-Irvine Galaxy Survey

NGC 6925 steht 3,7° nord-nordwestlich von α Microscopii und scheint mit 11m3 von der Position α 20h34m20,5s / δ -31°58´51,2“.  Sie zeigt sich uns von ihrer schrägen Seite mit einer Winkelausdehnung von 3,1´x 1,12´. Sie gehört dem Typ SA(s)bc an, steht in einer Entfernung von etwa 127 Millionen Lichtjahren und wurde im Juli 1834 von Wilhelm Herschel entdeckt.

In dieser Galaxie leuchtete im Juli 2011 eine von Stu Parker aus Neuseeland entdeckte Supernova auf. Diese erhielt die Bezeichnung SN2011ei.

Bild 05: NGC 6925; Foto: The Carnegie-Irvine Galaxy Survey

Im Sternbild Mikroskop stehen mehrere Galaxienhaufen, unter anderen Abell 3695, die aber nur den Großteleskopen zugänglich sind. (Der Abell-Katalog (engl.: Abell catalog of rich clusters of galaxies) ist ein Katalog von über 4000 Galaxienhaufen.)

2.3 Sonstiges

Literaturhinweise:

  • dtv-Atlas zur Astronomie                                                  J. Herrmann
  • Schlüsseldaten Astronomie                                             Harenberg
  • Internet Wikipedia                                                                div. Autoren
  • Internet Kuuke´s Sterrenbeelden                                Kuuke
  • Sternbilder von A – Z                                                           A. Rükl

Quellenangaben der Abbildungen:

  • Bild 01: Urania‘s Mirror, Plate 24, graviert von Sidney Hall
  • Bild 02: Museum optischer Instrumente, ww.musoptin.com
  • Bild 03: IAU und Sky & Telescope
  • Bild 04: The Carnegie-Irvine Galaxy Survey
  • Bild 05: The Carnegie-Irvine Galaxy Survey

Die Serie der Sternbildbeschreibungen wird fortgesetzt.